Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 12(4): 2799-2808, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628168

ABSTRACT

The polysaccharide was extracted from Phascolosoma esculenta (PEP). Two purified polysaccharides (PEP-1 and PEP-2) were obtained by the column chromatography separation method. The molecular weights of PEP-1 and PEP-2 were 33.6 and 5.7 × 103 kDa, respectively. PEP-1 and PEP-2 had the same monosaccharides composition, but their molar ratios varied. The in vitro antioxidant activity of the PEP, PEP-1, and PEP-2 were investigated by scavenging free radicals like 3-ethylbenzoth-iazoline-6-sulfonic acid (ABTS), •OH, and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Additionally, the in vivo antioxidant activity of PEP-1 was examined using the Caenorhabditis elegans (C. elegans) organism. Results showed that PEP-1 was much more effective than PEP and PEP-2 at scavenging DPPH, •OH, and ABTS radicals. Additionally, PEP-1 strengthened C. elegans' ability to endure oxidative stress. PEP-1 possessed the in vivo antioxidant capacity, including the reactive oxygen species (ROS) content reducing, and protective effect on antioxidant enzyme activities in C. elegans. In summary, PEP, PEP-1, and PEP-2 might have the potential to develop as functional foods and clinical medications.

2.
Article in English | MEDLINE | ID: mdl-38452850

ABSTRACT

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Subject(s)
Inosine Monophosphate , Perciformes , Animals , Base Sequence , Amino Acid Sequence , Inosine Monophosphate/metabolism , Phylogeny , Perciformes/genetics , Perciformes/metabolism , Adenosine Monophosphate/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Body Weight/genetics , Fish Proteins/metabolism , Mammals/metabolism
3.
Front Physiol ; 14: 1221205, 2023.
Article in English | MEDLINE | ID: mdl-37520818

ABSTRACT

Introduction: Elongation of very long-chain fatty acids protein 6 (ELOVL6) played crucial roles in regulating energy expenditure and fatty acid metabolism. Many studies have performed to investigate the physiological roles and regulatory mechanisms of elovl6 in fish and animals, while few studies were reported in crustaceans. Methods: Here we reported on the molecular cloning, tissue distribution and expression profiles in response to dietary fatty acids, ambient salinity and starvation stress in Scylla paramamosain by using rapid amplification of cDNA ends (RACE) and quantitative real-time PCR. Results: Three elovl6 isoforms (named elovl6a, elovl6b and elovl6c) were isolated from S. paramamosain in the present study. The complete sequence of elovl6a was 1345 bp, the full-length sequence of elovl6b was 1419 bp, and the obtained elovl6c sequence was 1375 bp in full length. The elovl6a, elovl6b and elovl6c encoded 287, 329 and 301 amino acids respectively, and exhibited the typical structural features of ELOVL protein family members. Phylogenetic analysis showed that the ELOVL6a from S. paramamosain clustered most closely to ELOVL6 from Portunus trituberculatus and Eriocheir sinensis, while the ELOVL6b and ELOVL6c from S. paramamosain gathered alone into a single branch. Quantitative real-time PCR exhibited that the relatively abundant expression of elovl6b was observed in intestine and stomach, and the elovl6a and elovl6c were highly expressed in hepatopancreas. In addition, studies found that replacing fish oil with soybean oil could significantly increase the transcriptional levels of three elovl6 in hepatopancreas of S. paramamosain, and the expression of elovl6a and elovl6c in hepatopancreas were more sensitive to dietary fatty acids than the elovl6b. Compared with the normal sea water group (27‰), the expression of sterol-regulatory element binding protein1c (srebp-1), elovl6a, elovl6b and elovl6c were upregulated in the low salinity groups, particularly in 7‰. On the contrary, the starvation stress suppressed the expression of srebp-1, elovl6a, elovl6b and elovl6c. Discussion: These results may contribute to understand the functions of elovl6 in fatty acid synthesis and regulatory mechanisms in crustaceans.

4.
Article in English | MEDLINE | ID: mdl-37137257

ABSTRACT

Cultivation of Larimichthys crocea in low salinity water has been regarded as an effective way to treat diseases induced by pathogens in seawater. The kidney of euryhaline teleost plays important roles in not only osmoregulation but also regulation of intermediary metabolism. However, the renal responses of metabolism and osmoregulation in L. crocea to low salinity waters are still rarely reported. In this work, renal metabolomic analysis based on MS technique was conducted on the L. crocea following cultivation in salinities of 24, 8, 6, 4, and 2 ppt for 40 days. A total of 485 metabolites covering organic acids and derivatives (34.17 %), lipids and lipid-like molecules (17.55 %), organoheterocyclic compounds (12.22 %), nucleosides, nucleotides, and analogues (11.91 %), and organic oxygen compounds (10.97 %), were identified in L. crocea kidney. Compared with control group (salinity 24), nearly all amino acids, nucleotides, and their derivatives were decreased in the kidney of L. crocea, whereas most of lipid-related metabolites including phospholipid, glycerophospholipids, and fatty acids were increased. The decrease in urea and inorganic ions as well as TMAO, betaine and taurine in L. crocea kidney suggested the less demand for maintaining osmotic homeostasis. Several intermediary metabolites covering amino acids, TCA cycle intermediates, and fatty acids were also significantly changed to match with the shift of energy allocation from osmoregulation to other biological processes. The reduced energy demand for osmoregulation might contribute to the promotion of L. crocea growth under low salinity environment. What is more, carbamoylphosphate and urea that showed linear salinity response curves and higher ED50 values were potential biomarkers to adaptation to low salinity water. Overall, the characterization of metabolomes of L. crocea kidney under low salinity provided a better understanding of the adaptive mechanisms to low salinity water and potentially contributed to a reference for optimal culture salinity and feed formula of L. crocea culture in low salinity water.


Subject(s)
Perciformes , Salinity , Animals , Perciformes/physiology , Nucleotides/metabolism , Amino Acids/metabolism , Lipids , Water/metabolism , Fish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...