Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(13)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635211

ABSTRACT

The understanding of the composition dependent properties and freezing-thawing (F-T) resistance of geopolymer materials is vital to their applications in cold regions. In this study, metakaolin-based geopolymer (MKG) mortars were fabricated by controlling the Si/Al ratio and the Na/Al ratio. The pore structure and strength were measured by mercury intrusion porosimetry and compression tests, respectively, which both showed obvious correlations with the material composition. Mass loss, strength loss, visual rate, and microscopic observation were adopted to assess the changes of the material properties and microstructure caused by F-T loads. The results showed that the strength-porosity relationship roughly followed a linear plot. Increases of the Si/Al ratio increased the capillary pore volume, but decreased the gel pore volume and the F-T resistance. Increases of the Na/Al ratio decreased the gel pore, but roughly enhanced the F-T resistance. The MKG mortar at the Na/Al ratio of 1.26 showed the lowest total pore volume and the best F-T resistance. The mechanisms of our experimental observations were that the abundantly distributed air voids connected by the capillary pores facilitated the relaxation of hydraulic pressures induced by the freezing of the pore liquid. The findings of this work help better clarify the compositional dependence of the pore structure, strength, and freezing-thawing resistance of MKG materials and provide fundamental bases for their engineering applications in cold regions.

2.
Materials (Basel) ; 10(1)2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28772437

ABSTRACT

MgO cements have great potential for carbon sequestration as they have the ability to carbonate and gain strength over time. The hydration of reactive MgO occurs at a similar rate as ordinary Portland cement (PC) and forms brucite (Mg(OH)2, magnesium hydroxide), which reacts with CO2 to form a range of hydrated magnesium carbonates (HMCs). However, the formation of HMCs within the MgO-CO2-H2O system depends on many factors, such as the temperature and CO2 concentration, among others, which play an important role in determining the rate and degree of carbonation, the type and stability of the produced HMCs and the associated strength development. It is critical to understand the stability and transformation pathway of HMCs, which are assessed here through the use of X-ray photoelectron spectroscopy (XPS). The effects of the CO2 concentration (in air or 10% CO2), exposure to high temperatures (up to 300 °C) and curing period (one or seven days) are reported. Observed changes in the binding energy (BE) indicate the formation of different components and the transformation of the hydrated carbonates from one form to another, which will influence the final performance of the carbonated blends.

SELECTION OF CITATIONS
SEARCH DETAIL
...