Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 313, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654158

ABSTRACT

The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.


Subject(s)
Gene Expression Regulation, Plant , Glutamate-Ammonia Ligase , Gossypium , Nitrogen , Plant Proteins , Gene Duplication , Genes, Plant , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Nitrogen/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Antioxidants (Basel) ; 12(2)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36830024

ABSTRACT

Phosphorus (P) is an essential macronutrient, and an important component of plant metabolism. However, little is known about the effects of low P availability on P absorption, the photosynthetic electron transport chain, and the antioxidant system in cotton. This study used cotton genotypes (sensitive FJA and DLNTDH and tolerant BX014 and LuYuan343) with contrasting low-P tolerance in a hydroponic experiment under 15 µM, 50 µM, and 500 µM P concentrations. The results showed that low P availability reduced plant development and leaf area, shoot length, and dry weight in FJA and DLNADH, compared to BX014 and LuYuan343. The low P availability decreased the gas-exchange parameters such as the net photosynthetic rate, transpiration rate, and stomatal conductance, and increased the intercellular CO2 concentration. Chlorophyll a fluorescence demonstrated that the leaves' absorption and trapped-energy flux were largely steady. In contrast, considerable gains in absorption and trapped-energy flux per reaction center resulted from decreases in the electron transport per reaction center under low-P conditions. In addition, low P availability reduced the activities of antioxidant enzymes and increased the content of malondialdehyde in the cotton genotypes, especially in FJA and DLNTDH. Moreover, low P availability reduced the activity of PEPC and generated a decline in the content of ATP and NADPH. Our research can provide a theoretical physiological basis for the growth and tolerance of cotton under low-P conditions.

3.
Front Plant Sci ; 13: 1051080, 2022.
Article in English | MEDLINE | ID: mdl-36531355

ABSTRACT

Phosphorus (P) is an essential macronutrient required for fundamental processes in plants. Trait plasticity is crucial for plant adaptation to environmental change. Variations in traits underlie diverse phosphorus (P) acquisition strategies among plants. Nevertheless, how the intraspecific plasticity and integration of morphological traits contribute to Phosphorus-Use-Efficiency (PUE) in cotton is unknown. In this study, 25 morphological traits were evaluated in 384 cotton genotypes grown with low P (LP, 10µmol. L-1) and normal nutrition (CK, 500µmol. L-1) to assess the genetic variability of morphological traits and their relationship to phosphorus use efficiency. Results revealed a large genetic variation in mostly morphological traits under low P. Significant enhancement in root traits and phosphorus efficiency-related traits like PUE was observed at LP as compared to CK conditions. In response to low P availability, cotton genotypes showed large plasticity in shoot and total dry biomass, phosphorus, and nitrogen efficiency-related traits (i.e., phosphorus/nitrogen use efficiency, phosphorus/nitrogen uptake efficiency), and most root traits, but a limited response in root dry biomass, taproot length, root surface area, root volume, and SPAD value. In addition, significant correlations were observed between PUtE (phosphorus uptake efficiency), NUE (nitrogen use efficiency), TDB (total dry biomass), and RTD (root tissue density) with PUE under both P supply level and phosphorus stress index, which may be a key indicator for improving PUE under LP conditions. Most root traits are most affected by genotypes than nutrition level. Conserved PUE is more affected by the nutrition level than the genotype effect. Principal component analysis depicted the comprehensive indicators under two P supply conditions were mainly reflected in root-related traits and morphological indicators such as dry matter biomass. These results indicate that interspecific variations exist within these cotton genotypes and traits. Our study provides suggestions for future research to enhance the ability of the earth system model to predict how crops respond to environmental interference and provide target quality for cotton breeding in phosphorus-deficient areas.

4.
Front Public Health ; 10: 780476, 2022.
Article in English | MEDLINE | ID: mdl-35356017

ABSTRACT

This article examines the impact of digital economy on the integration of China's cultural tourism industry in the context of COVID-19 by measuring the integration degree of cultural tourism industry as a substitute variable of cultural tourism integration. The empirical study found that the development of digital economy during the COVID-19 pandemic did promote the integration of China's cultural tourism industry, and compared with year 2019, the digital economy has strengthened the integration of cultural tourism industry. During the COVID-19 pandemic, the development of digital economy has promoted the integration of China's cultural tourism industry, and the positive effect of digital economy on the integration of China's cultural tourism industry has gradually strengthened compared to previous ones. The digital economy has played a mediating role in the impact of COVID-19 on the integration of China's cultural tourism industry. Therefore, China should formulate macropolicies and digital economy-related policies to strengthen the ability of digital economy to deal with risks and improve the digital system.


Subject(s)
COVID-19 , Tourism , COVID-19/epidemiology , China/epidemiology , Humans , Industry , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...