Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Environ Sci Technol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871667

ABSTRACT

Antimicrobial resistance (AMR) undermines the United Nations Sustainable Development Goals of good health and well-being. Antibiotics are known to exacerbate AMR, but nonantibiotic antimicrobials, such as quaternary ammonium compounds (QACs), are now emerging as another significant driver of AMR. However, assessing the AMR risks of QACs in complex environmental matrices remains challenging due to the ambiguity in their chemical structures and antibacterial activity. By machine learning prediction and high-resolution mass spectrometric analysis, a list of antibacterial QACs (n = 856) from industrial chemical inventories is compiled, and it leads to the identification of 50 structurally diverse antibacterial QACs in sediments, including traditional hydrocarbon-based compounds and new subclasses that bear additional functional groups, such as choline, ester, betaine, aryl ether, and pyridine. Urban wastewater, aquaculture, and hospital discharges are the main factors influencing QAC distribution patterns in estuarine sediments. Toxic unit calculations and metagenomic analysis revealed that these QACs can influence antibiotic resistance genes (particularly sulfonamide resistance genes) through cross- and coresistances. The potential to influence the AMR is related to their environmental persistence. These results suggest that controlling the source, preventing the co-use of QACs and sulfonamides, and prioritizing control of highly persistent molecules will lead to global stewardship and sustainable use of QACs.

2.
Environ Sci Technol ; 58(15): 6814-6824, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38581381

ABSTRACT

Identifying persistent, mobile, and toxic (PMT) substances from synthetic chemicals is critical for chemical management and ecological risk assessment. Inspired by the triazine analogues (e.g., atrazine and melamine) in the original European Union's list of PMT substances, the occurrence and compositions of alkylamine triazines (AATs) in the estuarine sediments of main rivers along the eastern coast of China were comprehensively explored by an integrated strategy of target, suspect, and nontarget screening analysis. A total of 44 AATs were identified, of which 23 were confirmed by comparison with authentic standards. Among the remaining tentatively identified analogues, 18 were emerging pollutants not previously reported in the environment. Tri- and di-AATs were the dominant analogues, and varied geographic distributions of AATs were apparent in the investigated regions. Toxic unit calculations indicated that there were acute and chronic risks to algae from AATs on a large geographical scale, with the antifouling biocide cybutryne as a key driver. The assessment of physicochemical properties further revealed that more than half of the AATs could be categorized as potential PMT and very persistent and very mobile substances at the screening level. These results highlight that AATs are a class of PMT substances posing high ecological impacts on the aquatic environment and therefore require more attention.


Subject(s)
Atrazine , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , Triazines/analysis , Atrazine/analysis , China , Environmental Monitoring
3.
Water Res ; 256: 121564, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615605

ABSTRACT

Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with machine learning, we comprehensively investigated the reactivity and transformation of NOM, and the formation of organosulfates during the UV/peroxydisulfate (PDS) process. After 60 min UV/PDS treatment, the CHO formula number and dissolved organic carbon concentration significantly decreased by 83.4 % and 74.8 %, respectively. Concurrently, the CHOS formula number increased substantially from 0.7 % to 20.5 %. Machine learning identifies DBE and AImod as the critical characteristics determining the reactivity of NOM during UV/PDS treatment. Furthermore, linkage analysis suggests that decarboxylation and dealkylation reactions are dominant transformation pathways, while the additions of SO3 and SO4 are also non-negligible. According to SHAP analysis, the m/z, number of oxygens, DBE and O/C of NOM were positively correlated with the formation of organosulfates in UV/PDS process. 92 organosulfates were screened out by precursor ion scan of HPLC-MS/MS and verified by UPLC-Q-TOF-MS, among which, 7 organosufates were quantified by authentic standards with the highest concentrations ranging from 2.1 to 203.0 ng L‒1. In addition, the cytotoxicity of NOM to Chinese Hamster Ovary (CHO) cells increased by 13.8 % after 30 min UV/PDS treatment, likely responsible for the formation of organosulfates. This is the first study to employ FT-ICR MS combined with machine learning to identify the dominant NOM properties affecting its reactivity and confirmed the formation of organosulfates from sulfate radical oxidation of NOM.


Subject(s)
Machine Learning , Sulfates , Sulfates/chemistry , Animals , CHO Cells , Ultraviolet Rays , Cricetulus , Mass Spectrometry , Water Purification/methods , Oxidation-Reduction
4.
Angew Chem Int Ed Engl ; 63(17): e202401372, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38390783

ABSTRACT

Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(µ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.

5.
ACS Nano ; 18(7): 5632-5646, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38344992

ABSTRACT

Physical stimulation with mild heat possesses the notable ability to induce immunomodulation within the tumor microenvironment (TME). It transforms the immunosuppressive TME into an immune-active state, making tumors more receptive to immune checkpoint inhibitor (ICI) therapy. Transient receptor potential vanilloid 1 (TRPV1), which can be activated by mild heat, holds the potential to induce these alterations in the TME. However, achieving precise temperature control within tumors while protecting neighboring tissues remains a significant challenge when using external heat sources. Taking inspiration from the heat sensation elicited by capsaicin-containing products activating TRPV1, this study employs capsaicin to chemically stimulate TRPV1, imitating immunomodulatory benefits akin to those induced by mild heat. This involves developing a glutathione (GSH)-responsive immunomodulatory prodrug micelle system to deliver capsaicin and an ICI (BMS202) concurrently. Following intravenous administration, the prodrug micelles accumulate at the tumor site through the enhanced permeability and retention effect. Within the GSH-rich TME, the micelles disintegrate and release capsaicin and BMS202. The released capsaicin activates TRPV1 expressed in the TME, enhancing programmed death ligand 1 expression on tumor cell surfaces and promoting T cell recruitment into the TME, rendering it more immunologically active. Meanwhile, the liberated BMS202 blocks immune checkpoints on tumor cells and T cells, activating the recruited T cells and ultimately eradicating the tumors. This innovative strategy represents a comprehensive approach to fine-tune the TME, significantly amplifying the effectiveness of cancer immunotherapy by exploiting the TRPV1 pathway and enabling in situ control of immunomodulation within the TME.


Subject(s)
Acetamides , Neoplasms , Prodrugs , Pyridines , Humans , Micelles , Prodrugs/pharmacology , Prodrugs/therapeutic use , Capsaicin/pharmacology , Capsaicin/therapeutic use , Hot Temperature , Tumor Microenvironment , Immunotherapy , Immunomodulation , Neoplasms/drug therapy
6.
Chem Sci ; 15(4): 1338-1347, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274072

ABSTRACT

Synthesis and characterization of Lewis base free coordination polymers of selected lanthanides are presented. For this purpose, the substituted CotTIPS ligand (CotTIPS = 1,4-bis-triisopropylsilyl-cyclo-octatetraendiide) was used to synthesize homoleptic, anionic multidecker compounds of the type [K{LnIII(ɳ8-CotTIPS)2}]n. Depending on the solvent used for crystallization and the ionic radii of the lanthanide cations, three different categories of one-dimensional heterobimetallic coordination polymers were obtained in the solid state. For the early lanthanides La and Ce a unique helical conformation was obtained by crystallization from toluene, while the ionic radius of Pr seems to be a turning point towards the crystallization of zigzag polymers. For Er a third structural motif, a trapezoidal wave polymer was observed. Additionally, the zigzag polymer for all compounds could be obtained by changing the solvent from toluene to Et2O, reavealing a correlation between solid-state structure and ionic radii as well as solvent. While photoluminescence (PL) properties of Cot-lanthanide compounds are scarce, the La complexes show ligand centered green luminescence, whereas the Ce complexes reveal deep red emission origin from d-f transitions. The Er-compounds are single-molecule magnets, in which the magnetic relaxation of each Er ion occurs isolated from its neighbors at temperatures above 10 K, while below 9 K a strong antiferromagnetic coupling between the Er ions was seen.

7.
Sci Bull (Beijing) ; 69(5): 612-620, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38101961

ABSTRACT

Aerosol-bound organic radicals, including environmentally persistent free radicals (EPFRs), are key components that affect climate, air quality, and human health. While putative structures have been proposed, the molecular characteristics of EPFRs remain unknown. Here, we report a surrogate method to characterize EPFRs in real ambient samples using mass spectrometry. The method identifies chemically relevant oxygenated polycyclic aromatic hydrocarbons (OxPAH) that interconvert with oxygen-centered EPFR (OC-EPFR). We found OxPAH compounds most relevant to OC-EPFRs are structurally rich and diverse quinones, whose diversity is strongly associated with OC-EPFR levels. Both atmospheric oxidation and combustion contributed to OC-EPFR formation. Redundancy analysis and photochemical aging model show pyrolytic sources generated more oxidized OC-EPFRs than photolytic sources. Our study reveals the detailed molecular characteristics of OC-EPFRs and shows that oxidation states can be used to identify the origins of OC-EPFRs, offering a way to track the development and evolution of aerosol particles in the environment.

8.
Environ Sci Technol ; 57(49): 20854-20863, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38010983

ABSTRACT

The limited information in existing mass spectral libraries hinders an accurate understanding of the composition, behavior, and toxicity of organic pollutants. In this study, a total of 350 polycyclic aromatic compounds (PACs) in 9 categories were successfully identified in fine particulate matter by gas chromatography high resolution mass spectrometry. Using mass spectra and retention indexes predicted by in silico tools as complementary information, the scope of chemical identification was efficiently expanded by 27%. In addition, quantitative structure-activity relationship models provided toxicity data for over 70% of PACs, facilitating a comprehensive health risk assessment. On the basis of extensive identification, the cumulative noncarcinogenic risk of PACs warranted attention. Meanwhile, the carcinogenic risk of 53 individual analogues was noteworthy. These findings suggest that there is a pressing need for an updated list of priority PACs for routine monitoring and toxicological research since legacy polycyclic aromatic hydrocarbons (PAHs) contributed modestly to the overall abundance (18%) and carcinogenic risk (8%). A toxicological priority index approach was applied for relative chemical ranking considering the environmental occurrence, fate, toxicity, and analytical availability. A list of 39 priority analogues was compiled, which predominantly consisted of high-molecular-weight PAHs and alkyl derivatives. These priority PACs further enhanced source interpretation, and the highest carcinogenic risk was attributed to coal combustion.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Polycyclic Compounds/analysis , Air Pollutants/analysis , Workflow , Environmental Monitoring/methods , Particulate Matter/analysis , Risk Assessment , China
9.
iScience ; 26(11): 108317, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026147

ABSTRACT

Nitrogenous organic (CHON), crucial for secondary organic aerosol (SOA), forms through poorly studied mechanisms in clouds. Our study explores CHON transformation during cloud processes (CPs). These processes play a vital role in enhancing the variety of CHONs, leading to the formation of CHONs with oxygen atom counts ranging from 1 to 10 and double bond equivalent (DBE) values spanning from 2 to 10. We proposed that the CHONs formed during CPs are formed through aqueous phase reactions with CHO compound precursors via nucleophilic attacks by NH3. This scheme can be account for roughly three-quarters of the CHONs by number in cloud water, and near two-thirds of all CHONs are formed through reactions between NH3 and carbonyl-containing biogenic volatile organic compound (BVOC) ozonolysis intermediates. This study provides the first insights into the evolution of CHONs during CPs and reveals the significant roles of CPs in the formation of CHONs.

10.
Inorg Chem ; 62(37): 15148-15156, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37655998

ABSTRACT

Single-molecule magnets are molecular complexes proposed to be useful for information storage and quantum information processing applications. In the quest for multilevel systems that can act as Qudits, two dysprosium-based isotopologues were synthesized and characterized. The isotopologues are [164Dy2(tmhd)6(tape)] (1(I=0)) and [163Dy2(tmhd)6(tape)] (2(I=5/2)), where tmhd = 2,2,6,6-tetramethylheptandionate and tape = 1,6,7,12-tetraazaperylene. Both complexes showed slow relaxation at a zero applied magnetic field with dominant Orbach and Raman relaxation mechanisms. µSQUID studies at milli-Kelvin temperatures reveal quasi-single ion loops, in contrast with the expected S-shape (near zero field) butterfly loops, characteristic of antiferromagnetically coupled dimeric complexes. Through analysis of the low-temperature data, we find that the interaction operating between Dy(III) is small, leading to a small exchange biasing from the zero-field transition. The resulting indirectly coupled nuclear states are degenerate or possess a small energy difference between them. We, therefore, conclude that for the creation of Qudits with enlarged Hilbert spaces, shorter Dy(III)···Dy(III) distances are deemed essential.

11.
Chem Rev ; 123(17): 10584-10640, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37531601

ABSTRACT

Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.


Subject(s)
Environmental Pollutants , Environmental Pollutants/toxicity , Environmental Monitoring/methods , Risk Assessment
12.
Environ Pollut ; 331(Pt 2): 121942, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37263568

ABSTRACT

Benzotriazole ultraviolet stabilizers (BZT-UVs), substituted diphenylamine antioxidants (S-DPAs), and synthetic phenolic antioxidants (SPAs) are three types of synthetic additive pollutants that are received increasing attention in the recent decade. In this study, a total of twenty-seven target analytes were measured in sediment cores and surface sediments collected from a lake with long sedimentary history. All target analytes were detected in the sediment samples, and mean values of the total ∑BZT-UVs, ∑S-DPAs and ∑SPAs concentrations were 220 ± 552 ng/g dry weight (d.w.), 20.8 ± 27.9 ng/g d. w., and 95.8 ± 146 ng/g d. w., respectively. Based on the dating results of two sediment cores, the total concentrations of BZT-UVs, S-DPA, and SPAs showed a fluctuating but overall increasing trend over time, which intuitively reflects the change of historical emissions. Meanwhile, fecal and sewage markers (i.e., sterols and pharmaceuticals, respectively) were jointly used to trace the probable sources of these pollutants. Results from the correlation and clustering analyses suggest that unregular fecal discharges and point-source domestic sewage need to be considered if pollution in the investigated area is to be controlled. To our knowledge, this study is the initial attempt to reveal the temporal variations of these synthetic additive pollutants in an aquatic environment in China and to demonstrate the feasibility of using markers to trace the sources of emerging pollutant analogues.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Sewage/analysis , Antioxidants/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Lakes/analysis , Water Pollutants, Chemical/analysis , Phenols/analysis , Diphenylamine , China , Geologic Sediments
13.
Biomaterials ; 297: 122120, 2023 06.
Article in English | MEDLINE | ID: mdl-37058899

ABSTRACT

Obesity leads to the development of many metabolic diseases, causing severe health problems. Menthol can induce adipocyte browning and thus has been used to combat obesity. To deliver menthol with a sustained effect, an injectable hydrogel that comprises carboxymethyl chitosan and aldehyde-functionalized alginate that are crosslinked through dynamic Schiff-base linkages is developed to load menthol-cyclodextrin inclusion complexes (IC). To render the as-developed hydrogel soluble after its payload is released, amino acid-loaded liposomes, functioning as nanocontrollers, are covalently grafted onto networks of the hydrogel. Upon subcutaneous injection in mice with diet-induced obesity, the as-developed hydrogel absorbs body fluids and spontaneously swells, expanding and stretching its networks, gradually releasing the loaded IC. Menthol then disassociates from the released IC to induce adipocyte browning, triggering fat consumption and increasing energy expenditure. Meanwhile, the expanded hydrogel networks destabilize the grafted liposomes, which function as built-in nanocontrollers, unleashing their loaded amino acid molecules to disrupt the dynamic Schiff-base linkages, causing hydrogel to dissolve. The thus-developed nanocontroller-mediated dissolving hydrogel realizes the sustained release of menthol for treating obesity and its related metabolic disorders without leaving exogenous hydrogel materials inside the body, and thereby preventing any undesired adverse effects.


Subject(s)
Menthol , Metabolic Diseases , Animals , Mice , Menthol/pharmacology , Hydrogels/chemistry , Liposomes , Obesity/drug therapy , Obesity/metabolism , Adipocytes/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/complications , Amino Acids
14.
Transl Cancer Res ; 11(11): 3974-3985, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36523301

ABSTRACT

Background: To explore the prognostic factors of survival in non-small cell lung cancer (NSCLC) patients using the competing risk analysis. Methods: This was a retrospective cohort study. NSCLC patients with complete data were selected from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2015. Outcomes were censored, cancer-specific mortality in NSCLC, and other-cause mortality. Gray's test was used in univariable analysis, and a multivariable Fine-Gray competing risk model with backward elimination was used to explore the prognostic factors of survival. The screened variables were incorporated into a random survival forest (RSF) model for the prediction of 1-, 3-, and 5-year survival in patients with NSCLC. Receiver operator characteristic (ROC) curves, calibration curves, the value of area under the curve (AUC), and decision curve analysis (DCA) were used to evaluate the performance. Results: Totally 1,251 eligible patients were included, 678 (54.20%) patients were cancer-specific mortality, and 128 (10.23%) patients were other-cause mortality. The median follow-up time was 26 months. Age, primary site, N stage, M stage, surgery type, tumor size, and lymph nodes (LNs) count were included in the multivariable Fine-Gray model for further analysis (P<0.05). The six most important features (surgery type, tumor size, M stage, LNs count, N stage, and primary site) were included in the competing risk analysis using the RSF model. The value of AUC for predicting 1-, 3-, and 5-year survival in the testing set were 0.796, 0.804, and 0.792, respectively. Calibration curves were well-fitted. DCA curves showed that the RSF model had similar or greater clinical net benefits in survival compared with the 8th edition the American Joint Committee on Cancer (AJCC) staging. The good performance of the RSF model under different surgery types, T, N, and M stages. Conclusions: We conducted a competing risk analysis using the RSF model for predicting the 1-, 3-, and 5-year survival of NSCLC. We generated a web calculator (https://github.com/YingChen19/Prognostic-factors-of-long-term-survival-of-non-small-cell-lung-cancer), which could provide a convenient assessment and could help improve the prognosis and survival of NSCLC.

16.
Environ Sci Technol ; 56(23): 16759-16767, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36334087

ABSTRACT

Benzotriazole UV stabilizers (BZT-UVs), including 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole (UV-328) that is currently under consideration for listing under the Stockholm Convention, are applied in many commodities and industrial products. However, limited information is available on the interannual variation of their environmental occurrence. In this study, an all-in-one strategy combining target, suspect, and nontarget screening analysis was established to comprehensively explore the temporal trends of BZT-UVs in mollusks collected from the Chinese Bohai Sea between 2010 and 2018. Significant residue levels of the target analytes were determined with a maximum total concentration of 6.4 × 103 ng/g dry weight. 2-(2-Hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chloro-benzotriazole (UV-326), 5-chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole (UV-327), and 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) were the predominant analogues, and UV-328 was the most frequently detected BZT-UV with a detection frequency (DF) of 87%. Whereas five biotransformation products and six impurity-like BZT-UVs were tentatively identified, their low DFs and semi-quantified concentrations suggest that the targeted analytes were the predominant BZT-UVs in the investigated area. A gradual decrease in the total concentrations of BZT-UVs was observed, accompanied by downward trends of the abundant compounds (e.g., UV-326 and UV-P). Consequently, the relative abundance of UV-327 increased because of its consistent environmental presence. These results suggest that continuous monitoring and risk assessment of BZT-UVs other than UV-328 are of importance in China.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Mollusca , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , China , Oceans and Seas
17.
Ann Transl Med ; 10(20): 1123, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36388772

ABSTRACT

Background: Mycoplasma pneumoniae (M. Pneumoniae) is a common pathogen of respiratory tract infections, but there is still a lack of detailed investigation on the large sample of M. Pneumoniae infection in the all age population. And patients with severe M. Pneumoniae pneumonia (SMPP) still have a certain risk of death. How to identify the clinical characteristics and population of patients with SMPP as soon as possible is still an urgent problem in clinical practice. Methods: Demographic characteristics, patient clinical information, and laboratory data of 81,131 patients with respiratory tract infections (RTIs) in the Affiliated Suzhou Hospital of Nanjing Medical University from 2014 to 2020 were retrospectively collected from all patient records. The serum particle agglutination (PA) test was used to determine M. Pneumoniae infection by detecting specific antibodies. The white blood cell count, the proportion of neutrophils and lymphocytes, C-reactive protein (CRP) and lactate dehydrogenase (LDH) levels between children and adults with SMPP were compared by Student's t-test; other clinical features were analyzed by χ2 test or Fisher's exact test. Results: A total of 81,131 patients with RTIs were included, and 21,582 (26.60%) M. Pneumoniae immunoglobulin M (IgM)-positive patients were detected. From 2014 to 2020, the annual proportions of M. Pneumoniae RTIs were 23.60%, 28.18%, 38.08%, 27.05%, 23.44%, 25.26%, and 18.33%, respectively. In terms of seasonal distribution, April-June and September-November were the peak seasons of M. Pneumoniae infection each year. Children and women have a high proportion of M. Pneumoniae infection. The peak age of M. Pneumoniae infection was between 4 and 14 years old. There were 301 cases of SMPP, including 281 children and 20 adults (8 cases of pregnant women). Children and pregnant women accounted for a high proportion of SMPP. Children with SMPP had more extrapulmonary symptoms, multilobar infiltrates, and increased CRP and LDH levels compared with adults. Conclusions: M. Pneumoniae infection has seasonal, sex, and age distribution trends. Children and pregnant women accounted for a high proportion of SMPP. Extrapulmonary symptoms, multilobar infiltrates, and increased CRP and LDH levels may be helpful to identify SMPP in children than in adults.

18.
Environ Sci Technol ; 56(15): 10681-10690, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35839457

ABSTRACT

Stress from mixtures of synthetic chemicals is among the key issues that have significant adverse impacts on the marine ecosystems. A robust screening workflow integrating toxicological-based ranking schemes is still deficient for comprehensive investigation on the main constituents in chemical mixtures that contribute to the ecological risks. In this study, the presence and compositions of a collection of priority pollutants were monitored by suspect screening analysis of seawater and estuarine water samples from the semiclosed Bohai Sea. In total, 108 organic pollutants in nine use categories were identified. Pesticides, intermediates, plastic additives, and per- and polyfluoroalkyl substances were the extensively detected chemical groups. Varied distribution patterns of the pollutants were illustrated intuitively in distinctive sampling areas by hierarchical cluster analysis, which were mainly influenced by run-off inputs, ocean currents, and chemical use history. Ecological risks of chemicals with quantified residue levels were first assessed by the toxicity-weighted concentration ranking scheme, and pentachlorophenol was found as the main contributor in the investigating areas. By optimization of multiple alternative variables (e.g., instrumental response and detection frequency), extended ranking of all the identified pollutants was plausible under the toxicological priority index framework. Similarity in toxicological endpoints of the prioritized pollutants could further been screened by ToxAlerts. Aromatic amine was highlighted as the most frequently detected structural alert (SA) for genotoxic carcinogenicity and mutagenicity. These findings fully demonstrate rationality of the ranking schemes integrated into the suspect screening analysis for profiling contamination characteristics, assessing ecological risk potentials, and prioritizing SAs.


Subject(s)
Environmental Pollutants , Pesticides , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring/methods , Environmental Pollutants/analysis , Pesticides/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
Front Physiol ; 13: 813096, 2022.
Article in English | MEDLINE | ID: mdl-35480033

ABSTRACT

Mechanosensitive vagal afferents in the lung, rapidly and slowly adapting receptors (RARs and SARs, respectively), play an important role in eliciting the reflexes that regulate the normal airway function. A profound bronchoconstrictive effect of 5-hydroxytryptamine (5-HT) has been extensively reported in various animal species, but its influence on the SAR and RAR activity is not known. This study investigated the effect of 5-HT on these receptors, and the possible mechanisms involved. Single-fiber activities of these afferents were measured in anesthetized, open-chest, and mechanically ventilated rats. Our results showed that intravenous injection of 5-HT evoked a consistent and pronounced stimulation of phasic RARs. In contrast, 5-HT generated an inconsistent and paradoxical action on SARs: no effect in 29% (5 of 17) of the SARs; stimulation in 35% (6 of 17); and inhibition in the remainder. These responses of both RARs and SARs to 5-HT were reproducible and dose-dependent. After the injection of a high dose of 5-HT (16 µg/kg), the receptor responses slowly reached a peak (after ∼8 s) and returned toward the baseline in ∼20 s, accompanied by a consistent increase in total pulmonary resistance and a decrease in dynamic lung compliance in a temporal pattern very similar to the increased receptor activity. When these changes in lung mechanics induced by 5-HT were prevented by pretreatment with salbutamol, a ß2 adrenergic receptor agonist, the delayed responses of both RARs and SARs to 5-HT were also abolished, except that the immediate stimulatory effect on a subset of RARs, the silent RARs, was not affected. In conclusion, 5-HT generated a delayed stimulatory effect on RARs and a paradoxical effect on SARs, which resulted primarily from the 5-HT-induced changes in mechanical properties of the lung.

SELECTION OF CITATIONS
SEARCH DETAIL
...