Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121568, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593607

ABSTRACT

Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.


Subject(s)
Pesticides , Wastewater , Water Pollutants, Chemical , Wetlands , Wastewater/chemistry , Risk Assessment , Waste Disposal, Fluid , China
2.
Sci Total Environ ; 838(Pt 2): 156071, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35597339

ABSTRACT

As an essential component in constructed wetland-microbial fuel cells (CW-MFC) system, the macrophytes play multiple roles in bioelectricity generation and decontaminants performance. However, the interrelation between macrophytes roots and cathode has not been fully investigated despite the fact that plant cultivation strategy is a critical issue in practice. For the first time, this study was designed to explore the interaction between macrophytes and cathode in CW-MFC by planting Cyperus altrnlifolius at relatively different positions from the cathode. The results showed that plants exhibited higher bioelectricity generation and dramatically improved pollution removal, as well as the improved richness and diversity of cathode microbes. More significantly, the relative locations between the plant roots and the cathode could lead to different cathode working patterns, while the optimal cathode pattern "plant root-assisted bio- & air-cathode" was formed when the plant roots are directly placed on the air-cathode layer in CW-MFC. The insight into the plant root and cathode relationship lies in whether the "multi-function cathode" can be established. This study contributes to increase the knowledge regarding the presence and behavior of plant roots and cathode throughout a CW-MFC system.


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes , Plant Roots , Wastewater , Wetlands
3.
Environ Sci Pollut Res Int ; 29(43): 64972-64982, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35482241

ABSTRACT

Aquatic plants can be used for in situ remediation of water-borne pharmaceutical compounds; however, such information and that of the potential risks of metabolites released into the environment are limited. This study determined the capacity of Canna indica and Acorus calamus used in the remediation of water-borne sulfonamides (SA). The tolerance, removal, accumulation, and biotransformation of various water-borne SAs were investigated in vivo by exposing plants to SA solutions (50 µg/L and 500 µg/L). After 28 days, C. indica removed more SAs (89.3-97.8%) than A. calamus (12.8-84.6%) and non-planted systems (8.0-69.3%). The SA removal results, except from the A. calamus system with 500 µg/L SA, fit the first-order kinetics model. The estimated half-lives of all SAs were 3-40 h and 2-60 h in the C. indica and A. calamus systems, respectively. In vivo biotransformation and rhizosphere degradation were the major phyto-removal mechanisms, constituting 24.9-81.1% and 0.0-37.1% of all SAs in the C. indica and A. calamus systems, respectively. SA acetyl metabolites were detected only in plant tissues supporting evidence for plant metabolic processes without risk into the environment. SA metabolism including oxidation, methylation, and conjugation via acetylation was potentially beneficial to accumulation and tolerate stress of antibiotic. Canna indica was more suitable for cleaning SA. Our findings better clarify the potential and low risks of phytoremediation in antibiotic-contaminated waters.


Subject(s)
Sulfonamides , Wetlands , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Pharmaceutical Preparations/metabolism , Plants/metabolism , Sulfanilamide/metabolism , Sulfonamides/metabolism , Water/metabolism
4.
Sci Total Environ ; 808: 152078, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863746

ABSTRACT

Constructed wetland-microbial fuel cell (CW-MFC) has exhibited the performance discrepancy between using granular activated carbon (GAC) and columnar activated carbon (CAC) as air-cathode materials. No doubt, this is linked with electrochemical performance and decontaminants characteristics in the CW-MFC system. To provide insight into this performance discrepancy, three CW-MFCs were designed with different carbon-material to construct varied shapes of air-cathodes. The results showed that the ring-shaped cathode filled with GAC yielded a highest voltage of 458 mV with maximum power density of 13.71 mW m-2 and >90% COD removal in the CW-MFC system. The electrochemical characteristics and the electron transport system activity (ETSA) are the driven force to bring the GAC a better electron transportation and oxygen reduction reaction (ORR). This will help elucidating underlying mechanisms of different activated carbon for air-cathode and thus promote its large application.


Subject(s)
Bioelectric Energy Sources , Charcoal , Electricity , Electrodes , Wastewater , Wetlands
5.
Chemosphere ; 288(Pt 2): 132487, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34626651

ABSTRACT

The effects of and main contributors in rhizosphere and plant species on the degradation of sulfonamides (SAs) in constructed wetland (CW) models for the treatment of domestic wastewater are currently unclear. To investigate the degradation and key rhizosphere factors of mixed SAs with sulfadiazine (SDZ), sulfapyridine (SPD), sulfamerazine (SMZ1), sulfamethazine (SMZ2), and sulfamethoxazole (SMX) at millimeter distances from the root surface, a multi-interlayer rhizobox experiment planted with Cyperus alternifolius, Juncus effusus, Cyperus papyrus, and an unvegetated control was conducted. There was a higher O2 saturation and dissolved organic carbon (DOC) content and a lower SA content in the rhizosphere and near/moderate-rhizosphere (0-3 and 3-8 mm from rhizosphere) than the far/non-rhizosphere (8-40 and 40-90 mm from rhizosphere). Bacterial abundance and community composition was indicative of the microbial degradation of SAs. Both the O2 and DOC contents promoted total bacterial abundance in different zones from CW rhizoboxes. The relative abundance of the most dominant bacteria was significantly correlated with O2, DOC, and SAs, except SMX, which also indicates other dissipation processes for SMX in the rhizosphere. Furthermore, more metabolites and aerobic SA-degrading bacteria were observed in the rhizosphere and near/moderate-rhizosphere than in the far/non-rhizosphere zones, suggesting that the effect of O2 in the rhizosphere is important in the degradation of SAs in CWs.


Subject(s)
Wastewater , Wetlands , Dissolved Organic Matter , Rhizosphere , Sulfonamides
6.
Sci Total Environ ; 799: 149301, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34371418

ABSTRACT

Frost-free areas have suitable climate for wetland plant growth and constructed wetlands (CW) technology. Information on the quantification of plant biomass and uptake efficiency in field-scale CWs is limited in these climates. The removal efficiency of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and total suspended solids (TSS) in wastewater from sewage plants, domestic sewage, and an industrial park in 15 rural and urban CWs in Guangdong Province, China, with an average temperature of 30 °C was evaluated. The effects of influent concentration, hydraulic load, the wastewater's physicochemical properties, operating conditions, and plant uptake were analysed. The mean removal rates were 40.0%, 45.2%, 41.1%, and 71.7% for TN, TP, COD, and TSS, respectively, which were higher than the removal load of the field-scale CWs in temperate regions. Removal loads of TN, TP, COD, and TSS were highest in CWs that have been operating for 5-6 years, treating wastewater volumes of over 1 m3/m2·d. The removal efficiency was mainly related to the inflow concentration and less affected by the type of CWs. Nutrient accumulation trends were primarily linked to influent concentrations (TN: r2 = 0.89, P = 0.007; TP: r2 = 0.96, P = 0.001) and plant biomass (TN: r2 = 0.96, P = 0.001; TP: r2 = 0.92, P = 0.004). Plant biomass contributed 2%-29% and 2%-70%, respectively, to removing N and P in CWs. The average uptake concentration of N and P in aboveground plant organs (15.66 ± 4.44 mg N/g, 2.15 ± 1.18 mg P/g) was generally higher than that of other temperate plants. A strong relationship between TN and TP in the biomass was also observed; however, the relationship is only restricted by the influent TP concentration. Arundo donax is well-adapted for nutrient accumulation and adaptation and is an ideal wetland plant to purify wastewater in frost-free climates.


Subject(s)
Phosphorus , Wetlands , Nitrogen/analysis , Sewage , Waste Disposal, Fluid , Wastewater
7.
Chemosphere ; 227: 496-504, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31004816

ABSTRACT

Wetland plants are proven to perform well in water treatment. However, the phytoremediation capability of wetland plants for antibiotics, especially the uptake and metabolism involved in vivo, is poorly understood. In this study, we investigated the removal, uptake, and specific metabolism by Canna indica and Iris pseudacorus of five sulfonamides (SAs) using hydroponic experiments for seven days. The removal of SAs ranged from 15.2% to 98.4% in the planted groups, whereas that in the unplanted control group was much lower (12.6%-39.9%). The accumulation of SAs in plants was in a concentration-dependent manner via an active process and is not a major removal mechanism (constituted 0.31%-3.62% of the total removal load in plant system). The results also showed differences in the removal and accumulation by plant species of SAs. The acetyl conjugates (N-acetyl SA) were formed, which significantly enhanced the uptake of SAs (P < 0.001) except sulfapyridine. The concentrations of N-acetyl SA accounted for only 0.4%-23.8% of the total SAs distribution in plants, suggesting the involvement of other metabolism pathways. Methylation and oxidation metabolites were identified in plant tissues and no SA-induced growth stress occurred, revealing that antibiotic metabolism in vivo should be associated with the ability of wetland plants to accumulate antibiotic and tolerate antibiotic stress.


Subject(s)
Biodegradation, Environmental , Plants/metabolism , Sulfonamides/metabolism , Wetlands , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Biological Transport , Drug Tolerance , Iris/metabolism , Stress, Physiological , Sulfonamides/pharmacokinetics , Water Purification
8.
Chemosphere ; 210: 29-37, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29980069

ABSTRACT

The prevalence of cyanobacterial bloom (Cyano-bloom) and hepatotoxic microcystin (MC) pollution caused by eutrophication poses serious problems to aquatic ecosystems and public health. However, conventional water treatment technologies are inefficient for removing cyanotoxins. In this study, the performance of microcosm constructed wetlands (CWs) in the removal of Cyano-bloom, microcystin-LR (MC-LR), and nutrients was investigated following repeated loading of pollutants. The effects of plant and bioaugmentation of selected MC-LR degrading bacteria on removal efficiency, degrading gene mlrA abundance, and bacterial community structure were examined. More than 90% of the MC-LR and chlorophyll-a was eliminated by CWs after 3 d of hydraulic retention time (HRT) without a lag phase. No significant differences between planted and unplanted CWs were found in the MC-LR and Cyano-bloom removal and mlrA gene abundance. Nevertheless, the plants improved nutrient removal to reduce eutrophication. Bioaugmentation markedly enhanced the degradation of MC-LR from 16.7 µg L-1 to below the threshold value within 12 h, which could help shorten the HRT of CWs by increasing functional MC-LR degrading bacteria. In the soil of CWs, the following six bacterial genera with MC-LR-degrading potential were found: Sphingopyxis, Methylotenera, Pseudomonas, Methylosinus, Novosphingobium, and Sphingomonas. Among them, the first three also significantly proliferated in CWs with bioaugmentation during MC-LR degradation, indicating their high adaptability and MC-LR removal contribution. These results suggested that CWs could provide suitable conditions for MC-LR degrading microorganism proliferation, and CWs with bioaugmentation could be effective and practical measures for the remediation of eutrophication and MC pollution.


Subject(s)
Cyanobacteria/metabolism , Microcystins/isolation & purification , Wetlands , Biodegradation, Environmental , Eutrophication , Marine Toxins , Microcystis/isolation & purification , Water Purification/methods
9.
J Mammary Gland Biol Neoplasia ; 13(4): 353-60, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19034633

ABSTRACT

Although the pubertal surge of estrogen is the immediate stimulus to mammary development, the action of estrogen depends upon the presence of pituitary growth hormone and the ability of GH to stimulate production of IGF-I in the mammary gland. Growth hormone binds to its receptor in the mammary fat pad, after which production of IGF-I mRNA and IGF-I protein occurs. It is likely that IGF-I then works through paracrine means to stimulate formation of TEBs, which then form ducts by bifurcating or trifurcating and extending through the mammary fat pad. By the time pubertal development is complete a tree-like structure of branching ducts fills the rodent mammary fat pad. In addition to requiring IGF-I in order to act, estradiol also directly synergizes with IGF-I to enhance formation of TEBs and ductal morphogenesis. Together they increase IRS-1 phosphorylation and cell proliferation, and inhibit apoptosis. In fact, the entire process of ductal morphogenesis, in oophorectomized IGF-I(-/-) knockout female mice, can occur as a result of the combined actions of estradiol and IGF-I. IGF-I also permits progesterone action in the mammary gland. Together they have been shown to stimulate a form of ductal morphogenesis, which is anatomically different from the kind induced by IGF-I and estradiol. Although both progesterone and estradiol synergize with IGF-I by increasing IGF-I action parameters, there must be other, as yet unknown mechanisms that account for the anatomical differences in the different forms of ductal morphogenesis observed (hyperplasia in response to IGF-I plus estradiol and single layered ducts in response to IGF-I plus progesterone).


Subject(s)
Gonadal Steroid Hormones/metabolism , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Animals , Cell Shape , Growth Hormone/genetics , Humans , Insulin-Like Growth Factor I/genetics , Mammary Glands, Animal/cytology , Mammary Glands, Human/cytology
10.
Endocrinology ; 148(3): 1080-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17138659

ABSTRACT

Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both prostate compartments.


Subject(s)
Insulin-Like Growth Factor I/antagonists & inhibitors , Insulin-Like Growth Factor I/physiology , Muscle, Smooth/growth & development , Prostate/growth & development , Androgen-Binding Protein/metabolism , Animals , Cell Division/drug effects , Cells, Cultured , Female , Humans , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/pharmacology , Male , Mice , Mice, Knockout , Muscle Development/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Orchiectomy , Prostate/cytology , Prostate/drug effects , Prostate/metabolism , Testosterone/pharmacology
11.
Mol Endocrinol ; 20(2): 426-36, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16223973

ABSTRACT

Somatostatin analogs (SAs) treat acromegaly by lowering pituitary GH secretion, which, in turn, lowers systemic IGF-I. The profound systemic effect is often greater than expected in the face of only partial GH suppression. Here we report that the SA SOM230 can also act by a nonpituitary-mediated inhibition of IGF-I action. SOM230 inhibited mammary development in intact and hypophysectomized female rats, a process requiring IGF-I. IGF-I overcame this inhibition. SOM230 also inhibited other actions of IGF-I (inhibition of apoptosis, phosphorylation of insulin receptor substrate-1, and cell division). SOM230 did not reduce IGF-I mRNA abundance in mammary gland but did stimulate IGF binding protein 5 (IGFBP5). IGFBP5 was 3.75 times higher in mammary epithelium of SOM230 than in placebo animals (P < 0.001). Administration of IGFBP-5 also inhibited GH-induced mammary development (P < 0.001). Measurement of sstr(1-5) (somatostatin subtype receptor) by real-time RT-PCR revealed that the mammary glands had an abundance of sstr(3) and lower amounts of sstr(4) and sstr(5) but no sstr(1) or sstr(2.) That mammary development was also inhibited to a lesser degree than SOM230 by octreotide, whose main action is through sstr(2), strongly suggests that sstr(3) is at least in part mediating the effects of the SAs. We conclude that 1) SAs inhibit IGF-I action in the mammary gland through a novel nonpituitary mechanism; 2) IGFBP-5, here shown to inhibit pubertal mammary development, might mediate the effect; and 3) Measurement of available sstr receptors in the mammary gland suggests that sstr(3) mediates the SA activity, but sstr(5) is also a possible mediator.


Subject(s)
Insulin-Like Growth Factor I/antagonists & inhibitors , Mammary Glands, Animal/growth & development , Receptors, Somatostatin/agonists , Somatostatin/analogs & derivatives , Animals , Apoptosis , Cell Division/drug effects , Female , Growth Hormone/antagonists & inhibitors , Growth Hormone/pharmacology , Insulin-Like Growth Factor Binding Protein 5/metabolism , Insulin-Like Growth Factor Binding Protein 5/pharmacology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Octreotide/pharmacology , Phosphorylation , Rats , Rats, Inbred Strains , Somatostatin/pharmacology
12.
Endocrinology ; 146(3): 1170-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15604210

ABSTRACT

Progestins have been implicated in breast cancer development, yet a role for progesterone (Pg) in ductal morphogenesis (DM) has not been established. To determine whether Pg could cause DM, we compared relative effects of Pg, estradiol (E2) and IGF-I on anatomical and molecular biological parameters of IGF-I-related DM in oophorectomized female IGF-I(-/-) mice. Pg had little independent effect on mammary development, but together with IGF-I, in the absence of E2, Pg stimulated an extensive network of branching ducts, occupying 92% of the gland vs. 28.3% with IGF-I alone, resembling pubertal development (P < 0.002). Its major effect was on enhancing duct length and branching (P < 0.002). Additionally, Pg enhanced phosphorylation of IRS-1, increased cell division, and increased the antiapoptotic effect of IGF-I. Pg action was inhibited by RU486 (P < 0.01). E2 also stimulated DM by enhancing IGF-I action but had a greater effect on terminal end bud formation and side branching (P < 0.002). In contrast to previous findings, long-term exposure to E2 alone, without IGF-I, caused formation of ducts and side branches, a novel finding. Both IGF-I and E2 were found necessary for Pg-induced alveolar development. In conclusion, Pg, through Pg receptor can enhance IGF-I action in DM, and E2 acts through a similar mechanism; E2 alone caused formation of ducts and side branches; there were differences in the actions of Pg and E2, the former largely affecting duct formation and extension, and the latter side branching; and both IGF-I and E2 were necessary for Pg to form mature alveoli.


Subject(s)
Estradiol/metabolism , Insulin-Like Growth Factor I/metabolism , Mammary Glands, Animal/cytology , Progesterone/physiology , Animals , Apoptosis , Female , Hormones/metabolism , Insulin-Like Growth Factor I/genetics , Lactation , Mammary Glands, Animal/metabolism , Mice , Mice, Transgenic , Mifepristone/pharmacology , Morphogenesis , Ovariectomy , Phosphorylation , Progesterone/metabolism , Time Factors
13.
Biochem Biophys Res Commun ; 317(2): 444-50, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15063778

ABSTRACT

Mice that are homozygous for the vibrator mutation express 65-85% less phosphatidylinositol transfer protein alpha (PITPalpha) than their wild type litter mates. By postnatal day 10-12 (P10-12) they exhibit signs of neurodegeneration and die prematurely by P40. In the present study, we examine the lipid content of brain, liver, and mammary glands from these animals. Lipid-mediated signal transduction is evaluated in primary fibroblast cultures. With respect to the lipid make-up of brain and liver, we report that there is a significant increase (2- to 4-fold) in the neutral lipids present in the livers of vb/vb animals when compared with wild type (+/+) litter mates. No significant changes are observed in the brains of these animals. The mammary glands of vb/vb mice are underdeveloped with respect to ductal and alveolar structures, and the fat pad is composed of predominantly brown adipose tissue rather than the white adipose tissue characteristic of age-matched wild type litter mates. No differences are observed in any aspect of lipid-mediated signal transduction.


Subject(s)
Adipose Tissue/metabolism , Brain/metabolism , Lipid Metabolism , Liver/metabolism , Mammary Glands, Animal/metabolism , Membrane Proteins/deficiency , Phosphatidylcholines/metabolism , Phosphatidylinositols/metabolism , Animals , Carrier Proteins , Cells, Cultured , Fibroblasts/metabolism , Mice , Mice, Inbred C57BL , Phospholipid Transfer Proteins , Signal Transduction/drug effects , Signal Transduction/physiology , Tissue Distribution , Vasopressins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...