Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
World J Methodol ; 14(2): 91889, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38983655

ABSTRACT

BACKGROUND: However, the connection between smoking and the prognosis of patients with bladder cancer remains unclear. AIM: To determine whether smoking is linked to the recurrence and progression of bladder cancer. METHODS: As of July 20, 2022, relevant English-language research was identified by searching PubMed, the Web of Science, and the Cochrane Library. We pooled the available data from the included studies using a random effects model. Subgroup analysis and sensitivity analysis were also conducted. RESULTS: A total of 12 studies were included in this meta-analysis. The combined analysis revealed that tobacco exposure was associated with a significantly greater recurrence rate than nonsmoking status [odd ratios (OR) = 1.76, 95%CI: 1.84-2.93], and the progression of bladder cancer was significantly greater in smokers than in nonsmokers (OR = 1.21, 95%CI: 1.02-1.44). Stratified analysis further revealed that current smokers were more likely to experience relapse than never-smokers were (OR = 1.85, 95%CI: 1.11-3.07). Former smokers also had a greater risk of relapse than did never-smokers (OR = 1.73, 95%CI: 1.09-2.73). Subgroup analysis indicated that non-Caucasians may be more susceptible to bladder cancer recurrence than Caucasians are (OR = 2.13, 95%CI: 1.74-2.61). CONCLUSION: This meta-analysis revealed that tobacco exposure may be a significant risk factor for both the recurrence and progression of bladder cancer.

2.
World J Gastroenterol ; 30(20): 2726-2730, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855153

ABSTRACT

The screening of colorectal cancer (CRC) is pivotal for both the prevention and treatment of this disease, significantly improving early-stage tumor detection rates. This advancement not only boosts survival rates and quality of life for patients but also reduces the costs associated with treatment. However, the adoption of CRC screening methods faces numerous challenges, including the technical limitations of both noninvasive and invasive methods in terms of sensitivity and specificity. Moreover, socioeconomic factors such as regional disparities, economic conditions, and varying levels of awareness affect screening uptake. The coronavirus disease 2019 pandemic further intensified these cha-llenges, leading to reduced screening participation and increased waiting periods. Additionally, the growing prevalence of early-onset CRC necessitates innovative screening approaches. In response, research into new methodologies, including artificial intelligence-based systems, aims to improve the precision and accessibility of screening. Proactive measures by governments and health organizations to enhance CRC screening efforts are underway, including increased advocacy, improved service delivery, and international cooperation. The role of technological innovation and global health collaboration in advancing CRC screening is undeniable. Technologies such as artificial intelligence and gene sequencing are set to revolutionize CRC screening, making a significant impact on the fight against this disease. Given the rise in early-onset CRC, it is crucial for screening strategies to continually evolve, ensuring their effectiveness and applicability.


Subject(s)
COVID-19 , Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Early Detection of Cancer/methods , COVID-19/diagnosis , COVID-19/epidemiology , Artificial Intelligence , Mass Screening/methods , Mass Screening/organization & administration , SARS-CoV-2/isolation & purification , Quality of Life , Colonoscopy
3.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3263-3270, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511365

ABSTRACT

Vegetation phenology is an important sensor that responds to environmental changes. Based on MOD13Q1 EVI data, we used the dynamic threshold method to extract vegetation phenological parameters of the central Yunnan urban agglomeration from 2001 to 2020, namely the start of growing season, the end of growing season, and the length of growing season, aiming to reveal the spatiotemporal variations in vegetation phenology and urban-rural differences. The results showed that vegetation phenology of the central Yunnan urban agglomeration from 2001 to 2020 generally showed a phenomenon of delayed start of growing season, delayed the end of growing season (0.66 days per year), and prolonged growing season. Compared with suburban and rural areas, growing season in urban areas in the past 20 years had started earlier (1.05 days per year), ended later (0.91 days per year), and thus growing season had been prolonged (1.79 days per year). Vegetation phenology showed significant difference on the gradient of urban, suburban, and rural areas. The start and the end of growing season of urban vegetation were the earliest, and the length of growing season was the longest, with the most significant changes in the urban areas and within the range of 0-2 km outward. The start of growing season in urban area was significantly earlier, the end of growing season was significantly delayed, and length of growing season was prolonged significantly with the increase of population density, per capita GDP, and the proportion of built-up area. The sensitivity of different phenological periods of vegetation and their duration to environmental changes varied on the gradient of urban, suburban and rural areas. Population density and proportion of built-up area in the study area played an important role in delaying the end of growing season of vegetation in the central Yunnan urban agglomeration.


Subject(s)
Climate Change , Urbanization , China , Seasons , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...