Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(4): e2302537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37742322

ABSTRACT

The colon tumor microenvironment has a high concentration of H2 S and glutathione, which is highly immunosuppressive and adverse to multiple therapeutic methodologies such as ferroptosis. Here, an engineered microbial nanohybrid based on Escherichia coli (E. coli) and Cu2 O nanoparticles to specific colon tumor therapy and immunosuppression reversion is reported. The as-prepared E. coli@Cu2 O hybrid can accumulate in tumor sites upon intravenous injection, and Cu2 O nanoparticles convert to Cux S by consuming the endogenous H2 S, which exhibits strong photothermal conversion at near-infrared II (NIR II) biological window. Furthermore, E. coli@Cu2 O is able to induce cellular ferroptosis and cuproptosis through inactivation of glutathione peroxidase 4 and aggregation of dihydrolipoamide S-acetyltransferase, respectively. Photothermal-enhanced ferroptosis/cuproptosis achieved by E. coli@Cu2 O reverses the immunosuppression of colon tumors by triggering dendritic cell maturation (about 30%) and T cell activation (about 50% CD8+ T cells). Concerted with immune checkpoint blockade, the engineered microbial nanohybrid can inhibit the growth of abscopal tumors upon NIR illumination. Overall, the designed microbial nanohybrid can achieve tumor-specific photothermal-enhanced ferroptosis/cuproptosis and immunosuppression reversion, showing promise in precise tumor therapy in future clinical translation.


Subject(s)
Colonic Neoplasms , Ferroptosis , Nanoparticles , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Escherichia coli , Immunotherapy , Colonic Neoplasms/therapy , Cell Line, Tumor , Tumor Microenvironment
2.
Biophys Rep ; 9(3): 134-145, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-38028149

ABSTRACT

Increased glycolysis for promoting adenosine triphosphate (ATP) generation is one of the hallmarks of cancer. Although reducing glucose intake or depriving cellular glucose can delay the growth of tumors to some extent, their therapeutic efficacy is a highly needed improvement for clinical translation. Herein, we found that mannose synergistic with glucose oxidase (GOx) can induce cell death by ATP inhibition, autophagy activation, and apoptosis protein upgradation. By using biodegradable zeolitic imidazolate frameworks (ZIF-8) as a nanocarrier (denoted as ZIF-8/M&G), the mannose and GOx can accumulate at the tumor site while having no obvious long-term toxicity. At the tumor site, GOx inhibits glycolysis by converting glucose and oxygen to H 2O 2 and gluconic acid, realizing oxidation therapy and expediting the degradation of the pH-responsive ZIF-8 nanoparticles, respectively. Simultaneously, mannose disturbs sugar metabolism and reduces oxygen consumption, which in turn promotes the GOx oxidation process. The concerted glycolysis inhibition through interactions between mannose and GOx endows ZIF-8/M&G nanospolier with excellent therapeutic efficacy both in vitro and in vivo. Synergistic glycolysis disturbance by the designed nanospoiler in this work proposes a versatile approach for metabolism disturbance to tumor treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...