Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293392

ABSTRACT

Blood reflux and metabolic regulation play important roles in chronic venous disease (CVD) development. Histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) serve as repressors that inhibit metabolic signaling, which is induced by proatherogenic flow to promote aortic endothelial cell (EC) dysfunction and atherosclerosis. The aim of this study was to elucidate the relationship between blood reflux and epigenetic factors HDACs and DNMTs in CVD. Human varicose veins with different levels of blood reflux versus normal veins with normal venous flow were examined. The results show that HDAC-1, -2, -3, -5, and -7 are overexpressed in the endothelium of varicose veins with blood reflux. Blood reflux-induced HDACs are enhanced in the varicose veins with a longer duration time of blood reflux. In contrast, these HDACs are rarely expressed in the endothelium of the normal vein with normal venous flow. Similar results are obtained for DNMT1 and DNMT3a. Our findings suggest that the epigenetic factors, HDACs and DNMTs, are induced in venous ECs in response to blood reflux but are inhibited in response to normal venous flow. Blood reflux-induced HDACs and DNMTs could inhibit metabolic regulation and promote venous EC dysfunction, which is highly correlated with CVD pathogenesis.


Subject(s)
Histone Deacetylases , Varicose Veins , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , DNA Modification Methylases/genetics , Varicose Veins/genetics , Epigenesis, Genetic , DNA , Chronic Disease
2.
Cardiol Res Pract ; 2021: 1452917, 2021.
Article in English | MEDLINE | ID: mdl-34336268

ABSTRACT

BACKGROUND: MicroRNA-10a (miR-10a) inhibits transcriptional factor GATA6 to repress inflammatory GATA6/VCAM-1 signaling, which is regulated by blood flow to affect endothelial function/dysfunction. This study aimed to identify the expression patterns of miR-10a/GATA6/VCAM-1 in vivo and study their implications in the pathophysiology of human coronary artery disease (CAD), i.e., atherosclerosis. METHODS: Human atherosclerotic coronary arteries and nondiseased arteries were used to detect the expressions of miR-10a/GATA6/VCAM-1 in pathogenic vs. normal conditions. In addition, sera from CAD patients and healthy subjects were collected to detect the level of circulating miR-10a. RESULTS: The comparison of human atherosclerotic coronary arteries with nondiseased arteries demonstrated that lower levels of endothelial miR-10a are related to human atherogenesis. Moreover, GATA6/VCAM-1 (a downstream target of miR-10a) was highly expressed in the endothelium, accompanied by the reduced levels of miR-10a during the development of human atherosclerosis. In addition, CAD patients had a significantly lower concentration of miR-10a in their serum compared to healthy subjects. CONCLUSIONS: Our findings suggest that low miR-10a and high GATA6/VCAM-1 in the cardiovascular endothelium correlates to the development of human atherosclerotic lesions, suggesting that miR-10a signaling has the potential to be developed as a biomarker for human atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...