Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3418-3421, 2022 07.
Article in English | MEDLINE | ID: mdl-36085800

ABSTRACT

We suggested a unified system with core components of data augmentation, ImageNet-pretrained ResNet-50, cost-sensitive loss, deep ensemble learning, and uncertainty estimation to quickly and consistently detect COVID-19 using acoustic evidence. To increase the model's capacity to identify a minority class, data augmentation and cost-sensitive loss are incorporated (infected samples). In the COVID-19 detection challenge, ImageNet-pretrained ResNet-50 has been found to be effective. The unified framework also integrates deep ensemble learning and uncertainty estimation to integrate predictions from various base classifiers for generalisation and reliability. We ran a series of tests using the DiCOVA2021 challenge dataset to assess the efficacy of our proposed method, and the results show that our method has an AUC-ROC of 85.43 percent, making it a promising method for COVID-19 detection. The unified framework also demonstrates that audio may be used to quickly diagnose different respiratory disorders.


Subject(s)
COVID-19 , Crowdsourcing , COVID-19/diagnosis , Cough/diagnosis , Humans , Reproducibility of Results , Uncertainty
2.
BMC Med Inform Decis Mak ; 21(1): 27, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33499852

ABSTRACT

BACKGROUND: Prescription medication (PM) misuse/abuse has emerged as a national crisis in the United States, and social media has been suggested as a potential resource for performing active monitoring. However, automating a social media-based monitoring system is challenging-requiring advanced natural language processing (NLP) and machine learning methods. In this paper, we describe the development and evaluation of automatic text classification models for detecting self-reports of PM abuse from Twitter. METHODS: We experimented with state-of-the-art bi-directional transformer-based language models, which utilize tweet-level representations that enable transfer learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT), proposed fusion-based approaches, and compared the developed models with several traditional machine learning, including deep learning, approaches. Using a public dataset, we evaluated the performances of the classifiers on their abilities to classify the non-majority "abuse/misuse" class. RESULTS: Our proposed fusion-based model performs significantly better than the best traditional model (F1-score [95% CI]: 0.67 [0.64-0.69] vs. 0.45 [0.42-0.48]). We illustrate, via experimentation using varying training set sizes, that the transformer-based models are more stable and require less annotated data compared to the other models. The significant improvements achieved by our best-performing classification model over past approaches makes it suitable for automated continuous monitoring of nonmedical PM use from Twitter. CONCLUSIONS: BERT, BERT-like and fusion-based models outperform traditional machine learning and deep learning models, achieving substantial improvements over many years of past research on the topic of prescription medication misuse/abuse classification from social media, which had been shown to be a complex task due to the unique ways in which information about nonmedical use is presented. Several challenges associated with the lack of context and the nature of social media language need to be overcome to further improve BERT and BERT-like models. These experimental driven challenges are represented as potential future research directions.


Subject(s)
Prescription Drugs , Social Media , Humans , Machine Learning , Natural Language Processing , Prescriptions
3.
JAMA Netw Open ; 2(11): e1914672, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31693125

ABSTRACT

Importance: Automatic curation of consumer-generated, opioid-related social media big data may enable real-time monitoring of the opioid epidemic in the United States. Objective: To develop and validate an automatic text-processing pipeline for geospatial and temporal analysis of opioid-mentioning social media chatter. Design, Setting, and Participants: This cross-sectional, population-based study was conducted from December 1, 2017, to August 31, 2019, and used more than 3 years of publicly available social media posts on Twitter, dated from January 1, 2012, to October 31, 2015, that were geolocated in Pennsylvania. Opioid-mentioning tweets were extracted using prescription and illicit opioid names, including street names and misspellings. Social media posts (tweets) (n = 9006) were manually categorized into 4 classes, and training and evaluation of several machine learning algorithms were performed. Temporal and geospatial patterns were analyzed with the best-performing classifier on unlabeled data. Main Outcomes and Measures: Pearson and Spearman correlations of county- and substate-level abuse-indicating tweet rates with opioid overdose death rates from the Centers for Disease Control and Prevention WONDER database and with 4 metrics from the National Survey on Drug Use and Health for 3 years were calculated. Classifier performances were measured through microaveraged F1 scores (harmonic mean of precision and recall) or accuracies and 95% CIs. Results: A total of 9006 social media posts were annotated, of which 1748 (19.4%) were related to abuse, 2001 (22.2%) were related to information, 4830 (53.6%) were unrelated, and 427 (4.7%) were not in the English language. Yearly rates of abuse-indicating social media post showed statistically significant correlation with county-level opioid-related overdose death rates (n = 75) for 3 years (Pearson r = 0.451, P < .001; Spearman r = 0.331, P = .004). Abuse-indicating tweet rates showed consistent correlations with 4 NSDUH metrics (n = 13) associated with nonmedical prescription opioid use (Pearson r = 0.683, P = .01; Spearman r = 0.346, P = .25), illicit drug use (Pearson r = 0.850, P < .001; Spearman r = 0.341, P = .25), illicit drug dependence (Pearson r = 0.937, P < .001; Spearman r = 0.495, P = .09), and illicit drug dependence or abuse (Pearson r = 0.935, P < .001; Spearman r = 0.401, P = .17) over the same 3-year period, although the tests lacked power to demonstrate statistical significance. A classification approach involving an ensemble of classifiers produced the best performance in accuracy or microaveraged F1 score (0.726; 95% CI, 0.708-0.743). Conclusions and Relevance: The correlations obtained in this study suggest that a social media-based approach reliant on supervised machine learning may be suitable for geolocation-centric monitoring of the US opioid epidemic in near real time.


Subject(s)
Machine Learning , Natural Language Processing , Opioid-Related Disorders/epidemiology , Social Media , Spatial Analysis , Cross-Sectional Studies , Drug Overdose/mortality , Electronic Data Processing , Humans , Pennsylvania
4.
Metab Eng ; 47: 393-400, 2018 05.
Article in English | MEDLINE | ID: mdl-29715517

ABSTRACT

D-glucaric acid is a promising platform compound used to synthesize many other value-added or commodity chemicals. The engineering of Escherichia coli for efficiently converting D-glucose to D-glucaric acid has been attempted for several years, with mixed sugar fermentation recently gaining growing interests due to the increased D-glucaric acid yield. Here, we co-expressed cscB, cscA, cscK, ino1, miox, udh, and suhB in E. coli BL21 (DE3), functionally constructing an unreported route from sucrose to D-glucaric acid. Further deletion of chromosomal zwf, pgi, ptsG, uxaC, gudD, over-expression of glk, and use of a D-fructose-dependent translation control system for pgi enabled the strain to use sucrose as the sole carbon source while achieving a high product titer and yield. The titer of D-glucaric acid in M9 medium containing 10 g/L sucrose reached ~1.42 g/L, with a yield of ~0.142 g/g on sucrose.


Subject(s)
Escherichia coli , Glucaric Acid/metabolism , Metabolic Engineering , Microorganisms, Genetically-Modified , Sucrose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...