Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 39(4): e3350, 2023.
Article in English | MEDLINE | ID: mdl-37186510

ABSTRACT

Ultrafiltration/diafiltration (UF/DF) has been the hallmark for concentrating and buffer exchange of protein and peptide-based therapeutics for years. Here we examine the capabilities and limitations of UF/DF membranes to process oligonucleotides using antisense oligonucleotides (ASOs) as a model. Using a 3 kDa UF/DF membrane, oligonucleotides as small as 6 kDa are shown to have low sieving coefficients (<0.008) and thus can be concentrated to high concentrations (≤200 mg/mL) with high yield (≥95%) and low viscosity (<15 centipoise), provided the oligonucleotide is designed not to undergo self-hybridization. In general, the oligonucleotide should be at least twice the reported membrane molecular weight cutoff for robust retention. Regarding diafiltration, results show that a small amount of salt is necessary to maintain adequate flux at concentrations exceeding about 40 mg/mL. Removal of salts along with residual solvents and small molecule process-related impurities can be robust provided they are not positively charged as the interaction with the oligonucleotide can prevent passage through the membrane, even for common divalent cations such as calcium or magnesium. Overall, UF/DF is a valuable tool to utilize in oligonucleotide processing, especially as a final drug substance formulation step that enables a liquid active pharmaceutical ingredient.


Subject(s)
Oligonucleotides, Antisense , Ultrafiltration , Ultrafiltration/methods , Oligonucleotides, Antisense/genetics , Proteins , Calcium
2.
Biotechnol Prog ; 29(3): 655-63, 2013.
Article in English | MEDLINE | ID: mdl-23436792

ABSTRACT

Recent studies have demonstrated the feasibility of using membrane ultrafiltration for the purification of pegylated proteins; however, the separations have all been performed at relatively low protein concentrations where intermolecular interactions are unimportant. The objective of this study was to examine the behavior at higher PEG concentrations and to develop an appropriate theoretical framework to describe the effects of intermolecular interactions. Ultrafiltration experiments were performed using pegylated α-lactalbumin as a model protein with both neutral and charged composite regenerated cellulose membranes. The transmission of the pegylated α-lactalbumin, PEG, and α-lactalbumin all increase with increasing PEG concentration due to the increase in the solute partition coefficient arising from unfavorable intermolecular interactions in the bulk solution. The experimental results were in good agreement with a simple model that accounts for the change in Gibbs free energy associated with these intermolecular interactions, including the effects of concentration polarization on the local solute concentrations upstream of the membrane. These intermolecular interactions are shown to cause a greater than expected loss of pegylated product in a batch ultrafiltration system, and they alter the yield and purification factor that can be achieved during a diafiltration process to remove unreacted PEG.


Subject(s)
Lactalbumin/chemistry , Polyethylene Glycols/chemistry , Ultrafiltration/methods , Animals , Cattle , Chemical Phenomena , Models, Chemical , Particle Size , Thermodynamics
3.
Biotechnol Bioeng ; 108(4): 822-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21404256

ABSTRACT

One of the challenges in producing a PEGylated therapeutic protein is that the PEGylation reaction typically generates a mixture of both singly and multiply PEGylated species. The objective of this study was to examine the feasibility of using ultrafiltration for the purification of a singly PEGylated protein from the multiply PEGylated conjugates. Data were obtained with α-lactalbumin that was PEGylated with a 20 kDa activated PEG, with the ultrafiltration performed over a range of pH and ionic strength using both unmodified and negatively charged composite regenerated cellulose membranes. Purification of the singly PEGylated α-lactalbumin from the multiply PEGylated species was accomplished using a diafiltration process with a negatively charged membrane at pH 5 and an ionic strength of 0.4 mM, conditions that maximized the electrostatic exclusion of the multiply PEGylated species from the charged membrane. The diafiltration process provided more than 97% yield with greater than 20-fold purification between the singly and doubly PEGylated proteins and nearly complete removal of the more heavily PEGylated species. The singly PEGylated α-lactalbumin was recovered as a dilute filtrate solution, although this dilution could be eliminated using a cascade filtration or the final product could be re-concentrated in a second ultrafiltration as part of the final formulation. These results demonstrate the feasibility of using ultrafiltration for the purification of singly PEGylated protein therapeutics.


Subject(s)
Lactalbumin/isolation & purification , Membranes, Artificial , Polyethylene Glycols/isolation & purification , Ultrafiltration/methods , Lactalbumin/chemistry , Osmolar Concentration , Polyethylene Glycols/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...