Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Natl Cancer Inst ; 113(6): 778-784, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33136151

ABSTRACT

BACKGROUND: Cumulative epidemiologic evidence has shown that early-life adiposity is strongly inversely associated with breast cancer risk throughout life, independent of adult obesity. However, the molecular mechanisms remain poorly understood. METHODS: We assessed the association of early-life adiposity, defined as self-reported body size during ages 10-20 years from a validated 9-level pictogram, with the transcriptome of breast tumor (N = 835) and tumor-adjacent histologically normal tissue (N = 663) in the Nurses' Health Study. We conducted multivariable linear regression analysis to identify differentially expressed genes in tumor and tumor-adjacent tissue, respectively. Molecular pathway analysis using Hallmark gene sets (N = 50) was further performed to gain biological insights. Analysis was stratified by tumor estrogen receptor (ER) protein expression status (n = 673 for ER+ and 162 for ER- tumors). RESULTS: No gene was statistically significantly differentially expressed by early-life body size after multiple comparison adjustment. However, pathway analysis revealed several statistically significantly (false discovery rate < 0.05) upregulated or downregulated gene sets. In stratified analyses by tumor ER status, larger body size during ages 10-20 years was associated with decreased cellular proliferation pathways, including MYC target genes, in both ER+ and ER- tumors. In ER+ tumors, larger body size was also associated with upregulation in genes involved in TNFα/NFkB signaling. In ER- tumors, larger body size was additionally associated with downregulation in genes involved in interferon α and interferon γ immune response and Phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling; the INFγ response pathway was also downregulated in ER- tumor-adjacent tissue, though at borderline statistical significance (false discovery rate = 0.1). CONCLUSIONS: These findings provide new insights into the biological and pathological underpinnings of the early-life adiposity and breast cancer association.


Subject(s)
Breast Neoplasms , Transcriptome , Adiposity/genetics , Adolescent , Adult , Breast Neoplasms/pathology , Child , Female , Humans , Obesity/genetics , Phosphatidylinositol 3-Kinases/genetics , Young Adult
2.
BMC Cancer ; 20(1): 695, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32723380

ABSTRACT

BACKGROUND: The International Agency for Research on Cancer classified radon and its decay-products as Group-1-human-carcinogens, and with the current knowledge they are linked specifically to lung cancer. Biokinetic models predict that radon could deliver a carcinogenic dose to breast tissue. Our previous work suggested that low-dose radon was associated with estrogen-receptor (ER)-negative breast cancer risk. However, there is limited research to examine the role of radon in breast cancer biology at the tissue level. We aim to understand molecular pathways linking radon exposure with breast cancer biology using transcriptome-wide-gene-expression from breast tumor and normal-adjacent tissues. METHODS: Our study included 943 women diagnosed with breast cancer from the Nurses' Health Study (NHS) and NHSII. We estimated cumulative radon concentration for each participant up-to the year of breast cancer diagnosis by linking residential addresses with a radon exposure model. Transcriptome-wide-gene-expression was measured with the Affymetrix-Glue-Human-Transcriptome-Array-3.0 and Human-Transcriptome-Array-2.0. We performed covariate-adjusted linear-regression for individual genes and further employed pathway-analysis. All analyses were conducted separately for tumor and normal-adjacent samples and by ER-status. RESULTS: No individual gene was associated with cumulative radon exposure in ER-positive tumor, ER-negative tumor, or ER-negative normal-adjacent tissues at FDR < 5%. In ER-positive normal-adjacent samples, PLCH2-reached transcriptome-wide-significance (FDR < 5%). Gene-set-enrichment-analyses identified 2-upregulated pathways (MAPK signaling and phosphocholine biosynthesis) enriched at FDR < 25% in ER-negative tumors and normal-adjacent tissues, and both pathways have been previously reported to play key roles in ionizing radiation induced tumorigenesis in experimental settings. CONCLUSION: Our findings provide insights into the molecular pathways of radon exposure that may influence breast cancer etiology.


Subject(s)
Breast Neoplasms/genetics , Carcinogens, Environmental/toxicity , Environmental Exposure/adverse effects , Gene Expression/radiation effects , Radiation Exposure/adverse effects , Radon/toxicity , Adult , Breast/radiation effects , Breast Neoplasms/chemistry , Female , Humans , Longitudinal Studies , Middle Aged , Non-Smokers , Receptors, Estrogen , Transcriptome
3.
PLoS One ; 14(10): e0222641, 2019.
Article in English | MEDLINE | ID: mdl-31581201

ABSTRACT

We developed an automated 2-tiered Fuhrman's grading system for clear cell renal cell carcinoma (ccRCC). Whole slide images (WSI) and clinical data were retrieved for 395 The Cancer Genome Atlas (TCGA) ccRCC cases. Pathologist 1 reviewed and selected regions of interests (ROIs). Nuclear segmentation was performed. Quantitative morphological, intensity, and texture features (n = 72) were extracted. Features associated with grade were identified by constructing a Lasso model using data from cases with concordant 2-tiered Fuhrman's grades between TCGA and Pathologist 1 (training set n = 235; held-out test set n = 42). Discordant cases (n = 118) were additionally reviewed by Pathologist 2. Cox proportional hazard model evaluated the prognostic efficacy of the predicted grades in an extended test set which was created by combining the test set and discordant cases (n = 160). The Lasso model consisted of 26 features and predicted grade with 84.6% sensitivity and 81.3% specificity in the test set. In the extended test set, predicted grade was significantly associated with overall survival after adjusting for age and gender (Hazard Ratio 2.05; 95% CI 1.21-3.47); manual grades were not prognostic. Future work can adapt our computational system to predict WHO/ISUP grades, and validating this system on other ccRCC cohorts.


Subject(s)
Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/diagnosis , Kidney Neoplasms/pathology , Aged , Algorithms , Automation , Female , Humans , Image Processing, Computer-Assisted , Kaplan-Meier Estimate , Machine Learning , Male , Middle Aged , Neoplasm Grading , Prognosis
4.
Cancer Epidemiol Biomarkers Prev ; 28(4): 798-806, 2019 04.
Article in English | MEDLINE | ID: mdl-30591591

ABSTRACT

BACKGROUND: Modified median and subgroup-specific gene centering are two essential preprocessing methods to assign breast cancer molecular subtypes by PAM50. We evaluated the PAM50 subtypes derived from both methods in a subset of Nurses' Health Study (NHS) and NHSII participants; correlated tumor subtypes by PAM50 with IHC surrogates; and characterized the PAM50 subtype distribution, proliferation scores, and risk of relapse with proliferation and tumor size weighted (ROR-PT) scores in the NHS/NHSII. METHODS: PAM50 subtypes, proliferation scores, and ROR-PT scores were calculated for 882 invasive breast tumors and 695 histologically normal tumor-adjacent tissues. Cox proportional hazards models evaluated the relationship between PAM50 subtypes or ROR-PT scores/groups with recurrence-free survival (RFS) or distant RFS. RESULTS: PAM50 subtypes were highly comparable between the two methods. The agreement between tumor subtypes by PAM50 and IHC surrogates improved to fair when Luminal subtypes were grouped together. Using the modified median method, our study consisted of 46% Luminal A, 18% Luminal B, 14% HER2-enriched, 15% Basal-like, and 8% Normal-like subtypes; 53% of tumor-adjacent tissues were Normal-like. Women with the Basal-like subtype had a higher rate of relapse within 5 years. HER2-enriched subtypes had poorer outcomes prior to 1999. CONCLUSIONS: Either preprocessing method may be utilized to derive PAM50 subtypes for future studies. The majority of NHS/NHSII tumor and tumor-adjacent tissues were classified as Luminal A and Normal-like, respectively. IMPACT: Preprocessing methods are important for the accurate assignment of PAM50 subtypes. These data provide evidence that either preprocessing method can be used in epidemiologic studies.


Subject(s)
Biomarkers, Tumor/genetics , Health Surveys/methods , Adult , Female , Humans , Male , Middle Aged , Nurses
SELECTION OF CITATIONS
SEARCH DETAIL
...