Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(7): e10262, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37408625

ABSTRACT

Carnivorous mammals disperse seeds through endozoochory and diploendozoochory. The former consists of ingestion of the fruit, passage through the digestive tract, and expulsion of the seeds, a process that allows scarification and dispersal of the seeds over long or short distances. The latter is typical of predators that expel seeds that were contained in the prey and the effects of which may differ from those of endozoochory with respect to the retention time of the seeds in the tracts, as well as their scarification and viability. The objective of this study was to conduct an experimental evaluation comparing the capacity of each mammal species in terms of the dispersal of Juniperus deppeana seeds and, at the same time, to compare this capacity through the two dispersal systems: endozoochory and diploendozoochory. We measured dispersal capacity using indices of recovery, viability, changes in testas, and retention time of seeds in the digestive tract. Juniperus deppeana fruits were collected in the Sierra Fría Protected Natural Area in Aguascalientes, Mexico, and were administered in the diet of captive mammals: gray fox (Urocyon cinereoargenteus), coati (Nasua narica) and domestic rabbits (Oryctolagus cuniculus). These three mammals represented the endozoochoric dispersers. For the diploendozoochoric treatment, seeds excreted by rabbits were incorporated into the diets of captive mammals: bobcat (Lynx rufus) and cougar (Puma concolor), in a local zoo. Seeds present in the scats were then collected, and recovery rates and retention times were estimated. Viability was estimated by X-ray optical densitometry and testa thicknesses were measured and surfaces checked using scanning electron microscopy. The results showed a recovery of seeds greater than 70% in all the animals. The retention time was <24 h in the endozoochory but longer at 24-96 h in the diploendozoochory (p < .05). Seed viability (x¯ ± SD) was decreased in rabbits (74.0 ± 11.5%), compared to fruits obtained directly from the canopy (89.7 ± 2.0%), while gray fox, coati, bobcat, and cougar did not affect seed viability (p < .05). An increase in the thickness of the testas was also observed in seeds excreted from all mammals (p < .05). Through evaluation, our results suggest that mammalian endozoochory and diploendozoochory contribute to the dispersal of J. deppeana by maintaining viable seeds with adaptive characteristics in the testa to promote forest regeneration and restoration. In particular, feline predators can provide an ecosystem service through scarification and seed dispersal.

2.
Ecol Evol ; 11(9): 3794-3807, 2021 May.
Article in English | MEDLINE | ID: mdl-33976775

ABSTRACT

The seed dispersal mechanisms and regeneration of various forest ecosystems can benefit from the actions of carnivores via endozoochory. This study was aimed to evaluate the role of carnivores in endozoochory and diploendozoochory, as well as their effect on seed viability, scarification, and germination in two forest ecosystems: temperate and tropical dry forest. We collected carnivore scat in the Protected Natural Area of Sierra Fría in Aguascalientes, Mexico, for 2 years to determine the abundance and richness of seeds dispersed by each carnivore species, through scat analysis. We assessed seed viability through optical densitometry using X-rays, analyzed seed scarification by measuring seed coat thickness using a scanning electron microscope, and evaluated seed germination in an experiment as the percentage of seeds germinated per carnivore disperser, plant species, and forest type. In the temperate forest, four plant species (but mainly Arctostaphylos pungens) were dispersed by four mammal species. The gray fox dispersed the highest average number of seeds per scat (66.8 seeds). Bobcat dispersed seeds through diploendozoochory, which was inferred from rabbit (Sylvilagus floridanus) hair detected in their scats. The tropical dry forest presented higher abundance of seeds and richness of dispersed plant species (four species) than in the temperate forest, and the coati dispersed the highest number of seeds (8,639 seeds). Endozoochory and diploendozoochory did not affect viability in thick-testa seeds (1,480 µm) in temperate forest and thin-testa seeds (281 µm) in tropical dry forest. Endozoochory improved the selective germination of seeds. Nine plant species were dispersed by endozoochory, but only one species (Juniperus sp.) by diploendozoochory. These results suggest that carnivores can perform an important ecological function by dispersing a great abundance of seeds, scarifying these seeds causing the formation of holes and cracks in the testas without affecting viability, and promoting the selective germination of seeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...