Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 12(5)2020 05 15.
Article in English | MEDLINE | ID: mdl-32429199

ABSTRACT

Surfaces of implanted medical devices are highly susceptible to biofilm formation. Bacteria in biofilms are embedded in a self-produced extracellular matrix that inhibits the penetration of antibiotics and significantly contributes to the mechanical stability of the colonizing community which leads to an increase in morbidity and mortality rate in clinical settings. Therefore, new antibiofilm approaches and substances are urgently needed. In this paper, we test the efficacy of a broad-range recombinant endolysin of the coliphage LysECD7 against forming and mature biofilms. We used a strong biofilm producer-Klebsiella pneumoniae Ts 141-14 clinical isolate. In vitro investigation of the antibacterial activity was performed using the standard biofilm assay in microtiter plates. We optimized the implantable diffusion chamber approach in order to reach strong biofilm formation in vivo avoiding severe consequences of the pathogen for the animals and to obtain a well-reproducible model of implant-associated infection. Endolysin LysECD7 significantly reduced the biofilm formation and was capable of degrading the preformed biofilm in vitro. The animal trials on the preformed biofilms confirmed these results. Overall, our results show that LysECD7 is a promising substance against clinically relevant biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Endopeptidases/pharmacology , Klebsiella pneumoniae/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/isolation & purification , Biofilms/growth & development , Coliphages/enzymology , Coliphages/genetics , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Endopeptidases/administration & dosage , Endopeptidases/genetics , Endopeptidases/isolation & purification , Female , Klebsiella Infections/microbiology , Klebsiella Infections/prevention & control , Klebsiella pneumoniae/physiology , Microbial Sensitivity Tests , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/prevention & control , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
2.
Arch Virol ; 164(5): 1493-1497, 2019 May.
Article in English | MEDLINE | ID: mdl-30895405

ABSTRACT

In the present study, we investigate the biological properties and genomic organization of virulent bacteriophage AM24, which specifically infects multidrug-resistant clinical Acinetobacter baumannii strains with a K9 capsular polysaccharide structure. The phage was identified as a member of the family Myoviridae by transmission electron microscopy. The AM24 linear double-stranded DNA genome of 97,177 bp contains 167 open reading frames. Putative functions were assigned for products of 40 predicted genes, including proteins involved in nucleotide metabolism and DNA replication, packaging of DNA into the capsid, phage assembly and structural proteins, and bacterial cell lysis. The gene encoding the tailspike, which possesses depolymerase activity towards the corresponding capsular polysaccharides, is situated in the phage genome outside of the structural module, upstream of the genes responsible for packaging of DNA into the capsid. The data on characterization of depolymerase-carrying phage AM24 contributes to our knowledge of the diversity of viruses infecting different capsular types of A. baumannii.


Subject(s)
Acinetobacter baumannii/virology , Bacterial Capsules/metabolism , Genes, Viral/genetics , Myoviridae/classification , Myoviridae/genetics , Acinetobacter baumannii/drug effects , Bacterial Capsules/classification , DNA, Viral/genetics , Drug Resistance, Multiple, Bacterial , Genome, Viral/genetics , Microscopy, Electron, Transmission , Myoviridae/isolation & purification , Open Reading Frames/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...