Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932529

ABSTRACT

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Subject(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Monoterpenes/metabolism , Indole Alkaloids/metabolism , Plants/metabolism , Pharmaceutical Preparations/metabolism , Plant Proteins/metabolism
2.
Nature ; 609(7926): 341-347, 2022 09.
Article in English | MEDLINE | ID: mdl-36045295

ABSTRACT

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Subject(s)
Antineoplastic Agents , Bioreactors , Biosynthetic Pathways , Metabolic Engineering , Saccharomyces cerevisiae , Vinblastine , Vinca Alkaloids , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/supply & distribution , Catharanthus/chemistry , Genes, Fungal , Genes, Plant , Metabolic Engineering/methods , Polyisoprenyl Phosphates , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tryptophan , Vinblastine/biosynthesis , Vinblastine/chemistry , Vinblastine/supply & distribution , Vinca Alkaloids/biosynthesis , Vinca Alkaloids/chemistry , Vinca Alkaloids/supply & distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...