Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Open J Eng Med Biol ; 5: 339-344, 2024.
Article in English | MEDLINE | ID: mdl-38899012

ABSTRACT

The pathophysiology of Adolescent Idiopathic Scoliosis (AIS) is not yet fully understood, but multifactorial hypotheses have been proposed that include defective central nervous system (CNS) control of posture, biomechanics, and body schema alterations. To deepen CNS control of posture in AIS, electroencephalographic (EEG) activity during a simple balance task in adolescents with and without AIS was parsed into EEG microstates. Microstates are quasi-stable spatial distributions of the electric potential of the brain that last tens of milliseconds. The spatial distribution of the EEG characterised by the orientation from left-frontal to right-posterior remains stable for a greater amount of time in AIS compared to controls. This spatial distribution of EEG, commonly named in the literature as class B, has been found to be correlated with the visual resting state network. Both vision and proprioception networks provide critical information in mapping the extrapersonal environment. This neurophysiological marker probably unveils an alteration in the postural control mechanism in AIS, suggesting a higher information processing load due to the increased postural demands caused by scoliosis.

2.
PLoS Comput Biol ; 16(8): e1007566, 2020 08.
Article in English | MEDLINE | ID: mdl-32804971

ABSTRACT

Brain networks are complex dynamical systems in which directed interactions between different areas evolve at the sub-second scale of sensory, cognitive and motor processes. Due to the highly non-stationary nature of neural signals and their unknown noise components, however, modeling dynamic brain networks has remained one of the major challenges in contemporary neuroscience. Here, we present a new algorithm based on an innovative formulation of the Kalman filter that is optimized for tracking rapidly evolving patterns of directed functional connectivity under unknown noise conditions. The Self-Tuning Optimized Kalman filter (STOK) is a novel adaptive filter that embeds a self-tuning memory decay and a recursive regularization to guarantee high network tracking accuracy, temporal precision and robustness to noise. To validate the proposed algorithm, we performed an extensive comparison against the classical Kalman filter, in both realistic surrogate networks and real electroencephalography (EEG) data. In both simulations and real data, we show that the STOK filter estimates time-frequency patterns of directed connectivity with significantly superior performance. The advantages of the STOK filter were even clearer in real EEG data, where the algorithm recovered latent structures of dynamic connectivity from epicranial EEG recordings in rats and human visual evoked potentials, in excellent agreement with known physiology. These results establish the STOK filter as a powerful tool for modeling dynamic network structures in biological systems, with the potential to yield new insights into the rapid evolution of network states from which brain functions emerge.


Subject(s)
Algorithms , Brain/physiology , Models, Neurological , Nerve Net/physiology , Adult , Animals , Brain Mapping , Computational Biology , Electroencephalography , Humans , Male , Rats , Signal Processing, Computer-Assisted , Young Adult
3.
Clin Neurophysiol ; 130(12): 2193-2202, 2019 12.
Article in English | MEDLINE | ID: mdl-31669753

ABSTRACT

OBJECTIVE: Epilepsy is a network disease with epileptic activity and cognitive impairment involving large-scale brain networks. A complex network is involved in the seizure and in the interictal epileptiform discharges (IEDs). Directed connectivity analysis, describing the information transfer between brain regions, and graph analysis are applied to high-density EEG to characterise networks. METHODS: We analysed 19 patients with focal epilepsy who had high-density EEG containing IED and underwent surgery. We estimated cortical activity during IED using electric source analysis in 72 atlas-based cortical regions of the individual brain MRI. We applied directed connectivity analysis (information Partial Directed Coherence) and graph analysis on these sources and compared patients with good vs poor post-operative outcome at global, hemispheric and lobar level. RESULTS: We found lower network integration reflected by global, hemispheric, lobar efficiency during the IED (p < 0.05) in patients with good post-surgical outcome, compared to patients with poor outcome. Prediction was better than using the IED field or the localisation obtained by electric source imaging. CONCLUSIONS: Abnormal network patterns in epilepsy are related to seizure outcome after surgery. SIGNIFICANCE: Our finding may help understand networks related to a more "isolated" epileptic activity, limiting the extent of the epileptic network in patients with subsequent good post-operative outcome.


Subject(s)
Cortical Excitability , Epilepsy, Temporal Lobe/physiopathology , Postoperative Complications/physiopathology , Adolescent , Adult , Child , Electroencephalography/methods , Epilepsy, Temporal Lobe/surgery , Female , Humans , Male , Neurosurgical Procedures/adverse effects
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6438-6441, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947316

ABSTRACT

Adaptive estimation methods based on general Kalman filter are powerful tools to investigate brain networks dynamics given the non-stationary nature of neural signals. These methods rely on two parameters, the model order p and adaptation constant c, which determine the resolution and smoothness of the time-varying multivariate autoregressive estimates. A sub-optimal filtering may present consistent biases in the frequency domain and temporal distortions, leading to fallacious interpretations. Thus, the performance of these methods heavily depends on the accurate choice of these two parameters in the filter design. In this work, we sought to define an objective criterion for the optimal choice of these parameters. Since residual- and information-based criteria are not guaranteed to reach an absolute minimum, we propose to study the partial derivatives of these functions to guide the choice of p and c. To validate the performance of our method, we used a dataset of human visual evoked potentials during face perception where the generation and propagation of information in the brain is well understood and a set of simulated data where the ground truth is available.


Subject(s)
Electroencephalography , Algorithms , Brain , Brain Mapping , Computer Simulation , Evoked Potentials, Visual , Humans
5.
Integr Org Biol ; 1(1): oby006, 2019.
Article in English | MEDLINE | ID: mdl-33791513

ABSTRACT

As functional morphologists, we aim to connect structures, mechanisms, and emergent higher-scale phenomena (e.g., behavior), with the ulterior motive of addressing evolutionary patterns. The fit between flowers and hummingbird bills has long been used as an example of impressive co-evolution, and hence hummingbirds' foraging behavior and ecological associations have been the subject of intense study. To date, models of hummingbird foraging have been based on the almost two-centuries-old assumption that capillary rise loads nectar into hummingbird tongue grooves. Furthermore, the role of the bill in the drinking process has been overlooked, instead considering it as the mere vehicle with which to traverse the corolla and access the nectar chamber. As a scientific community, we have been making incorrect assumptions about the basic aspects of how hummingbirds extract nectar from flowers. In this article, we summarize recent advances on drinking biomechanics, morphological and ecological patterns, and selective forces involved in the shaping of the hummingbird feeding apparatus, and also address its modifications in a previously unexpected context, namely conspecific and heterospecific fighting. We explore questions such as: how do the mechanics of feeding define the limits and adaptive consequences of foraging behaviors? Which are the selective forces that drive bill and tongue shape, and associated sexually dimorphic traits? And finally, what are the proximate and ultimate causes of their foraging strategies, including exploitative and interference competition? Increasing our knowledge of morphology, mechanics, and diversity of hummingbird feeding structures will have implications for understanding the ecology and evolution of these remarkable animals.

6.
Brain Topogr ; 32(4): 704-719, 2019 07.
Article in English | MEDLINE | ID: mdl-30511174

ABSTRACT

In the last decade, the use of high-density electrode arrays for EEG recordings combined with the improvements of source reconstruction algorithms has allowed the investigation of brain networks dynamics at a sub-second scale. One powerful tool for investigating large-scale functional brain networks with EEG is time-varying effective connectivity applied to source signals obtained from electric source imaging. Due to computational and interpretation limitations, the brain is usually parcelled into a limited number of regions of interests (ROIs) before computing EEG connectivity. One specific need and still open problem is how to represent the time- and frequency-content carried by hundreds of dipoles with diverging orientation in each ROI with one unique representative time-series. The main aim of this paper is to provide a method to compute a signal that explains most of the variability of the data contained in each ROI before computing, for instance, time-varying connectivity. As the representative time-series for a ROI, we propose to use the first singular vector computed by a singular-value decomposition of all dipoles belonging to the same ROI. We applied this method to two real datasets (visual evoked potentials and epileptic spikes) and evaluated the time-course and the frequency content of the obtained signals. For each ROI, both the time-course and the frequency content of the proposed method reflected the expected time-course and the scalp-EEG frequency content, representing most of the variability of the sources (~ 80%) and improving connectivity results in comparison to other procedures used so far. We also confirm these results in a simulated dataset with a known ground truth.


Subject(s)
Electroencephalography/methods , Algorithms , Brain/physiology , Brain Mapping/methods , Epilepsy/physiopathology , Evoked Potentials, Visual , Humans
7.
Article in English | MEDLINE | ID: mdl-26736771

ABSTRACT

Hypoglycemic events have been proven to be associated with measurable EEG changes. Several works in the literature have evaluated these changes by considering approaches at the single EEG channel level, but multivariate analyses have been scarcely investigated in Type 1 diabetes (T1D) subjects. The aim of the present work is to assess if and how hypoglycemia affects EEG coherence in a subset of EEG channels acquired in a hospital setting where eye- and muscle activation-induced artifacts are virtually absent. In particular, EEG multichannel data, acquired in 19 T1D hospitalized subjects undertaken to an insulin-induced hypoglycemia experiment, are considered. Computation of Partial Directed Coherence (PDC) through multivariate autoregressive models of P3-A1A2, P4-A1A2, C3-A1A2 and C4-A1A2 EEG channels shows that a decrease in the value of coherence, most likely related to the progressive loss of cognitive function and altered cerebral activity, occurs when passing from eu- to hypoglycemia, in both theta ([4, 8] Hz) and alpha ([8, 13] Hz) bands.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Electroencephalography , Hypoglycemia/physiopathology , Electroencephalography/classification , Electroencephalography/methods , Humans
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1520-3, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26736560

ABSTRACT

Local field potentials (LFPs) recorded in the barrel cortex in rats and mice are important to investigate somatosensory systems, the final aim being to start to understand mechanisms of brain representation of sensory stimuli in humans. Parameters extracted from LFP of particular interest include spike timing and transmembrane current flow. Recent improvements in microelectrodes technology have enabled neuroscientists to acquire a great amount of LFP signals during the same experimental session, calling for the development of algorithms for their quantitative automatic analysis. In the present work, an algorithm based on Phillips-Tikhonov regularization is presented to automatically detect the main features (in terms of amplitude and latency) of LFP waveforms recorded after whisker stimulation in rat. The accuracy of the algorithm is first assessed in a Monte Carlo simulation mimicking the acquisition of LFP in three different conditions of SNR. Then, the algorithm is tested by analyzing a set of 100 LFP recorded in the primary somatosensory (S1) cortex, i.e., the region involved in the cortical representation of touch in mammals.


Subject(s)
Vibrissae , Action Potentials , Algorithms , Animals , Mice , Microelectrodes , Rats , Somatosensory Cortex , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...