Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(11): e17370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682799

ABSTRACT

The composition of mammalian gut microbiomes is highly conserved within species, yet the mechanisms by which microbiome composition is transmitted and maintained within lineages of wild animals remain unclear. Mutually compatible hypotheses exist, including that microbiome fidelity results from inherited dietary habits, shared environmental exposure, morphophysiological filtering and/or maternal effects. Interspecific hybrids are a promising system in which to interrogate the determinants of microbiome composition because hybrids can decouple traits and processes that are otherwise co-inherited in their parent species. We used a population of free-living hybrid zebras (Equus quagga × grevyi) in Kenya to evaluate the roles of these four mechanisms in regulating microbiome composition. We analysed faecal DNA for both the trnL-P6 and the 16S rRNA V4 region to characterize the diets and microbiomes of the hybrid zebra and of their parent species, plains zebra (E. quagga) and Grevy's zebra (E. grevyi). We found that both diet and microbiome composition clustered by species, and that hybrid diets and microbiomes were largely nested within those of the maternal species, plains zebra. Hybrid microbiomes were less variable than those of either parent species where they co-occurred. Diet and microbiome composition were strongly correlated, although the strength of this correlation varied between species. These patterns are most consistent with the maternal-effects hypothesis, somewhat consistent with the diet hypothesis, and largely inconsistent with the environmental-sourcing and morphophysiological-filtering hypotheses. Maternal transmittance likely operates in conjunction with inherited feeding habits to conserve microbiome composition within species.


Subject(s)
Diet , Equidae , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , RNA, Ribosomal, 16S/genetics , Kenya , Feces/microbiology , Gastrointestinal Microbiome/genetics , Equidae/microbiology , Hybridization, Genetic , Female , Microbiota/genetics , Male
3.
Nat Commun ; 15(1): 1872, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472185

ABSTRACT

Sexual size dimorphism has motivated a large body of research on mammalian mating strategies and sexual selection. Despite some contrary evidence, the narrative that larger males are the norm in mammals-upheld since Darwin's Descent of Man-still dominates today, supported by meta-analyses that use coarse measures of dimorphism and taxonomically-biased sampling. With newly-available datasets and primary sources reporting sex-segregated means and variances in adult body mass, we estimate statistically-determined rates of sexual size dimorphism in mammals, sampling taxa by their species richness at the family level. Our analyses of wild, non-provisioned populations representing >400 species indicate that although males tend to be larger than females when dimorphism occurs, males are not larger in most mammal species, suggesting a need to revisit other assumptions in sexual selection research.


Subject(s)
Mammals , Reproduction , Humans , Male , Animals , Female , Body Size , Sex Characteristics
4.
Commun Biol ; 7(1): 333, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491117

ABSTRACT

Optimal foraging theory predicts that animals maximise energy intake by consuming the most valuable foods available. When resources are limited, they may include lower-quality fallback foods in their diets. As seasonal herbivore diet switching is understudied, we evaluate its extent and effects across three Kenyan reserves each for Critically Endangered eastern black rhino (Diceros bicornis michaeli) and Grevy's zebra (Equus grevyi), and its associations with habitat quality, microbiome variation, and reproductive performance. Black rhino diet breadth increases with vegetation productivity (NDVI), whereas zebra diet breadth peaks at intermediate NDVI. Black rhino diets associated with higher vegetation productivity have less acacia (Fabaceae: Vachellia and Senegalia spp.) and more grass suggesting that acacia are fallback foods, upending conventional assumptions. Larger dietary shifts are associated with longer calving intervals. Grevy's zebra diets in high rainfall areas are consistently grass-dominated, whereas in arid areas they primarily consume legumes during low vegetation productivity periods. Whilst microbiome composition between individuals is affected by the environment, and diet composition in black rhino, seasonal dietary shifts do not drive commensurate microbiome shifts. Documenting diet shifts across ecological gradients can increase the effectiveness of conservation by informing habitat suitability models and improving understanding of responses to resource limitation.


Subject(s)
Equidae , Herbivory , Humans , Animals , Kenya , Equidae/physiology , Reproduction , Diet
5.
Science ; 382(6677): 1348-1355, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38127744

ABSTRACT

In late December 1973, the United States enacted what some would come to call "the pitbull of environmental laws." In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale. With that prospect looming, and with scientific understanding ever changing, Science invited experts to discuss how the ESA has evolved and what its future might hold. -Brad Wible.

7.
Sci Rep ; 12(1): 18617, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329147

ABSTRACT

The best-supported hypothesis for why zebras have stripes is that stripes repel biting flies. While this effect is well-established, the mechanism behind it remains elusive. Myriad hypotheses have been suggested, but few experiments have helped narrow the field of possible explanations. In addition, the complex visual features of real zebra pelage and the natural range of stripe widths have been largely left out of experimental designs. In paired-choice field experiments in a Kenyan savannah, we found that hungry Stomoxys flies released in an enclosure strongly preferred to land on uniform tan impala pelts over striped zebra pelts but exhibited no preference between the pelts of the zebra species with the widest stripes and the narrowest stripes. Our findings confirm that zebra stripes repel biting flies under naturalistic conditions and do so at close range (suggesting that several of the mechanisms hypothesized to operate at a distance are unnecessary for the fly-repulsion effect) but indicate that interspecific variation in stripe width is associated with selection pressures other than biting flies.


Subject(s)
Diptera , Insect Bites and Stings , Animals , Equidae , Kenya
8.
PLoS Comput Biol ; 18(11): e1010670, 2022 11.
Article in English | MEDLINE | ID: mdl-36409767

ABSTRACT

Levels of sociality in nature vary widely. Some species are solitary; others live in family groups; some form complex multi-family societies. Increased levels of social interaction can allow for the spread of useful innovations and beneficial information, but can also facilitate the spread of harmful contagions, such as infectious diseases. It is natural to assume that these contagion processes shape the evolution of complex social systems, but an explicit account of the dynamics of sociality under selection pressure imposed by contagion remains elusive. We consider a model for the evolution of sociality strategies in the presence of both a beneficial and costly contagion. We study the dynamics of this model at three timescales: using a susceptible-infectious-susceptible (SIS) model to describe contagion spread for given sociality strategies, a replicator equation to study the changing fractions of two different levels of sociality, and an adaptive dynamics approach to study the long-time evolution of the population level of sociality. For a wide range of assumptions about the benefits and costs of infection, we identify a social dilemma: the evolutionarily-stable sociality strategy (ESS) is distinct from the collective optimum-the level of sociality that would be best for all individuals. In particular, the ESS level of social interaction is greater (respectively less) than the social optimum when the good contagion spreads more (respectively less) readily than the bad contagion. Our results shed light on how contagion shapes the evolution of social interaction, but reveals that evolution may not necessarily lead populations to social structures that are good for any or all.


Subject(s)
Social Behavior , Humans
9.
Behav Brain Sci ; 45: e106, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35796385

ABSTRACT

Here, we revise Pietraszewski's model of groups by assigning participant pairs with two triplets, denoting: (1) the type of game that models the interaction, (2) its critical switching point between alternatives (i.e., the game's similarity threshold), and (3) the perception of strategic similarity with the opponent. These triplets provide a set of primitives that accounts for individuals' strategic motivations and observed behaviors.


Subject(s)
Motivation , Humans
10.
Elife ; 112022 07 19.
Article in English | MEDLINE | ID: mdl-35852826

ABSTRACT

Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal 'strike zone' the most vulnerable to be targeted. From the prey's perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike's head. Our results highlight the crucial interplay between predators' attack strategy and response of prey underlying the predation risk within mobile animal groups.


Subject(s)
Fishes , Predatory Behavior , Animals , Fishes/physiology , Predatory Behavior/physiology
11.
R Soc Open Sci ; 9(6): 211515, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35719878

ABSTRACT

Although the COVID-19 vaccine has dramatically changed the fight against the pandemic, many exhibit vaccination-hesitancy. At the same time, continued human-induced emissions of greenhouse gases pose an alarming threat to humanity. Based on the theory of Subjective Expected Relative Similarity (SERS) and a recent international study that drastically modified COVID-19 health-related attitudes, we explain why a similar approach and a corresponding public policy are expected to help resolve both behavioural issues: reduce vaccination hesitancy and motivate climate actions.

12.
Ecol Evol ; 12(3): e8693, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342568

ABSTRACT

For grazing herbivores, dung density in feeding areas is an important determinant of exposure risk to fecal-orally transmitted parasites. When host species share the same parasite species, a nonrandom distribution of their cumulative dung density and/or nonrandom ranging and feeding behavior may skew exposure risk and the relative selection pressure parasites impose on each host. The arid-adapted Grevy's zebra (Equus grevyi) can range more widely than the water-dependent plains zebra (Equus quagga), with which it shares the same species of gastrointestinal nematodes. We studied how the spatial distribution of zebra dung relates to ranging and feeding behavior to assess parasite exposure risk in Grevy's and plains zebras at a site inhabited by both zebra species. We found that zebra dung density declined with distance from water, Grevy's zebra home ranges (excluding those of territorial males) were farther from water than those of plains zebras, and plains zebra grazing areas had higher dung density than random points while Grevy's zebra grazing areas did not, suggesting a greater exposure risk in plains zebras associated with their water dependence. Fecal egg counts increased with home range proximity to water for both species, but the response was stronger in plains zebras, indicating that this host species may be particularly vulnerable to the elevated exposure risk close to water. We further ran experiments on microclimatic effects on dung infectivity and showed that fewer nematode eggs embryonated in dung in the sun than in the shade. However, only 5% of the zebra dung on the landscape was in shade, indicating that the microclimatic effects of shade on the density of infective larvae is not a major influence on exposure risk dynamics. Ranging constraints based on water requirements appear to be key mediators of nematode parasite exposure in free-ranging equids.

14.
Int J Parasitol Parasites Wildl ; 16: 228-235, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34712556

ABSTRACT

Equids are chronically infected with parasitic strongyle nematodes. There is a rich literature on horse strongyles, but they are difficult to identify morphologically and genetic studies on strongyles infecting other equid species are few, hampering studies of host specificity. We sequenced expelled worms from two sympatric zebra species in central Kenya to expand the strongyle phylogeny and used DNA metabarcoding on faecal samples to genetically characterize zebra nemabiomes for the first time. We generated sequences for several species new to public genetic reference databases, all of which are typical strongyles in wild zebras (i.e., the three species of Cylindropharynx and Cyathostomum montgomeryi), and identified their closest relatives. We also discovered an apparent fungus infecting a quarter of the expelled Crossocephalus viviparus worms, a hyperabundant nematode species in the family Atractidae, hinting at the possibility that zebra host-parasite dynamics may involve a zebra-fungus mutualism. The two zebra species had similar nemabiomes; we found a complete overlap in the list of nematode species they carry and very similar prevalence (i.e., proportion of hosts infected) for the different nematode species. Our study suggests limited host-specificity in zebra strongyles and high potential for transmission between the plains zebra and the endangered Grevy's zebra.

15.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34311513

ABSTRACT

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Subject(s)
Digestive System , Ruminants , Animals , Body Size
16.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34155097

ABSTRACT

Collective behavior provides a framework for understanding how the actions and properties of groups emerge from the way individuals generate and share information. In humans, information flows were initially shaped by natural selection yet are increasingly structured by emerging communication technologies. Our larger, more complex social networks now transfer high-fidelity information over vast distances at low cost. The digital age and the rise of social media have accelerated changes to our social systems, with poorly understood functional consequences. This gap in our knowledge represents a principal challenge to scientific progress, democracy, and actions to address global crises. We argue that the study of collective behavior must rise to a "crisis discipline" just as medicine, conservation, and climate science have, with a focus on providing actionable insight to policymakers and regulators for the stewardship of social systems.


Subject(s)
Behavior , Cooperative Behavior , Internationality , Algorithms , Communication , Humans , Social Networking
17.
Integr Zool ; 16(3): 300-312, 2021 May.
Article in English | MEDLINE | ID: mdl-33452844

ABSTRACT

Analysis of the intestinal microbiota and physiological parameters in mammalian infancy can reveal health status. In this study, we used a combination of molecular and immunochemical approaches to assess fecal microbiota as well as Cortisol (Cor), Triiodothyronine (T3), and immunoglobulin A (IgA) levels of young forest musk deer (FMD), from birth to one month after weaning (7 days of age-110 days of age). During development as the diet of FMD changes from consuming milk to eating plants, the richness and diversity of intestinal microbiota of young FMD increased significantly. Cor levels remained unchanged throughout early development while significantly increased after weaning, T3 and IgA initially were derived from milk during lactation, significantly decreased after weaning. Correlation network analysis showed that the community of food-oriented microbes were highly structured and that many genera were correlated. Overall, this study provides scientific insights into effective management strategies for the protection of FMD population.


Subject(s)
Deer/microbiology , Feces/chemistry , Feces/microbiology , Gastrointestinal Microbiome/physiology , Animals , Animals, Newborn/microbiology , Bacteria/classification , Bacteria/genetics , Deer/growth & development , Diet/veterinary , Hydrocortisone/analysis , Immunoglobulin A/analysis , Triiodothyronine/analysis , Weaning
18.
Mol Ecol ; 30(2): 379-390, 2021 01.
Article in English | MEDLINE | ID: mdl-33174253

ABSTRACT

One of the most iconic wild equids, the plains zebra occupies a broad region of sub-Saharan Africa and exhibits a wide range of phenotypic diversity in stripe patterns that have been used to classify multiple subspecies. After decades of relative stability, albeit with a loss of at least one recognized subspecies, the total population of plains zebras has undergone an approximate 25% decline since 2002. Individuals with abnormal stripe patterns have been recognized in recent years but the extent to which their appearance is related to demography and/or genetics is unclear. Investigating population genetic health and genetic structure are essential for developing effective strategies for plains zebra conservation. We collected DNA from 140 plains zebra, including seven with abnormal stripe patterns, from nine locations across the range of plains zebra, and analyzed data from restriction site-associated and whole genome sequencing (RAD-seq, WGS) libraries to better understand the relationships between population structure, genetic diversity, inbreeding, and abnormal phenotypes. We found that genetic structure did not coincide with described subspecific variation, but did distinguish geographic regions in which anthropogenic habitat fragmentation is associated with reduced gene flow and increased evidence of inbreeding, especially in certain parts of East Africa. Further, zebras with abnormal striping exhibited increased levels of inbreeding relative to normally striped individuals from the same populations. Our results point to a genetic cause of stripe pattern abnormalities, and dramatic evidence of the consequences of habitat fragmentation.


Subject(s)
Equidae , Inbreeding , Africa, Eastern , Animals , Base Sequence , Equidae/genetics , Genetic Variation
20.
R Soc Open Sci ; 7(8): 201131, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32968537

ABSTRACT

Following the outbreak of COVID-19 pandemic, governments around the globe coerced their citizens to adhere to preventive health behaviours, aiming to reduce the effective reproduction numbers of the virus. Driven by game theoretic considerations and inspired by the work of US National Research Council's Committee on Food Habits (1943) during WWII, and the post-WWII Yale Communication Research Program, the present research shows how to achieve enhanced adherence to health regulations without coercion. To this aim, we combine three elements: (i) indirect measurements, (ii) personalized interventions, and (iii) attitude changing treatments (IMPACT). We find that a cluster of short interventions, such as elaboration on possible consequences, induction of cognitive dissonance, addressing next of kin and similar others and receiving advice following severity judgements, improves individuals' health-preserving attitudes. We propose extending the use of IMPACT under closure periods and during the resumption of social and economic activities under COVID-19 pandemic, since efficient and lasting adherence should rely on personal attitudes rather than on coercion alone. Finally, we point to the opportunity of international cooperation generated by the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...