Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Haematologica ; 107(6): 1410-1426, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34670358

ABSTRACT

Identification of novel vulnerabilities in the context of therapeutic resistance is emerging as a key challenge for cancer treatment. Recent studies have detected pervasive aberrant splicing in cancer cells, supporting its targeting for novel therapeutic strategies. Here, we evaluated the expression of several spliceosome machinery components in multiple myeloma (MM) cells and the impact of splicing modulation on tumor cell growth and viability. A comprehensive gene expression analysis confirmed the reported deregulation of spliceosome machinery components in MM cells, compared to normal plasma cells from healthy donors, with its pharmacological and genetic modulation resulting in impaired growth and survival of MM cell lines and patient-derived malignant plasma cells. Consistent with this, transcriptomic analysis revealed deregulation of BCL2 family members, including decrease of anti-apoptotic long form of myeloid cell leukemia-1 (MCL1) expression, as crucial for "priming" MM cells for Venetoclax activity in vitro and in vivo, irrespective of t(11;14) status. Overall, our data provide a rationale for supporting the clinical use of splicing modulators as a strategy to reprogram apoptotic dependencies and make all MM patients more vulnerable to BCL2 inhibitors.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Antineoplastic Agents/therapeutic use , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides
2.
Haematologica ; 105(10): 2420-2431, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33054082

ABSTRACT

Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases , Pyrimidines
3.
Leukemia ; 34(1): 234-244, 2020 01.
Article in English | MEDLINE | ID: mdl-31427718

ABSTRACT

The biological role and therapeutic potential of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) are still open questions. Herein, we investigated the functional significance of the oncogenic lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in MM. Our study demonstrates that NEAT1 expression level is higher in MM than in the majority of hematological malignancies. NEAT1 silencing by novel LNA-gapmeR antisense oligonucleotide inhibits MM cell proliferation and triggers apoptosis in vitro and in vivo murine MM model as well. By transcriptome analyses, we found that NEAT1 targeting downregulates genes involved in DNA repair processes including the Homologous Recombination pathway, which in turn results in massive DNA damage. These findings may explain the synergistic impact on apoptosis observed in MM cell lines co-treated with inhibitors of both NEAT1 and PARP. The translational significance of NEAT1 targeting is further underlined by its synergistic effects with the most common drugs administered for MM treatment, including bortezomib, carfilzomib, and melphalan. Overall, NEAT1 silencing is associated with a chemo-sensitizing effect of both conventional and novel therapies, and its targeting could therefore represent a promising strategy for novel anti-MM therapeutic options.


Subject(s)
DNA Repair/physiology , Multiple Myeloma/pathology , RNA, Long Noncoding/antagonists & inhibitors , Animals , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/physiology , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Oligonucleotides, Antisense/pharmacology
4.
Sci Rep ; 9(1): 10558, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332222

ABSTRACT

Somatic mutations of calreticulin (CALR) have been described in approximately 60-80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven't been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis.


Subject(s)
Calreticulin/genetics , Calreticulin/metabolism , INDEL Mutation , Oxidative Stress/genetics , Unfolded Protein Response/genetics , Cell Transformation, Neoplastic/genetics , DNA Repair/genetics , Down-Regulation , Endoplasmic Reticulum Stress/genetics , Gene Knockdown Techniques , Humans , K562 Cells , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phenanthrenes/pharmacology , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Superoxide Dismutase/metabolism , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/metabolism , Transcriptome
5.
Mol Oncol ; 12(12): 2102-2123, 2018 12.
Article in English | MEDLINE | ID: mdl-30259659

ABSTRACT

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by an excessive production of pro-inflammatory cytokines resulting in chronic inflammation and genomic instability. Besides the driver mutations in JAK2, MPL, and CALR genes, the deregulation of miRNA expression may also contribute to the pathogenesis of PMF. To this end, we recently reported the upregulation of miR-382-5p in PMF CD34+ cells. In order to unveil the mechanistic details of the role of miR-382-5p in pathogenesis of PMF, we performed gene expression profiling of CD34+ cells overexpressing miR-382-5p. Among the downregulated genes, we identified superoxide dismutase 2 (SOD2), which is a predicted target of miR-382-5p. Subsequently, we confirmed miR-382-5p/SOD2 interaction by luciferase assay and we showed that miR-382-5p overexpression in CD34+ cells causes the decrease in SOD2 activity leading to reactive oxygen species (ROS) accumulation and oxidative DNA damage. In addition, our data indicate that inhibition of miR-382-5p in PMF CD34+ cells restores SOD2 function, induces ROS disposal, and reduces DNA oxidation. Since the pro-inflammatory cytokine transforming growth factor-ß1 (TGF-ß1) is a key player in PMF pathogenesis, we further investigated the effect of TGF-ß1 on ROS and miR-382-5p levels. Our data showed that TGF-ß1 treatment enhances miR-382-5p expression and reduces SOD2 activity leading to ROS accumulation. Finally, inhibition of TGF-ß1 signaling in PMF CD34+ cells by galunisertib significantly reduced miR-382-5p expression and ROS accumulation and restored SOD2 activity. As a whole, this study reports that TGF-ß1/miR-382-5p/SOD2 axis deregulation in PMF cells is linked to ROS overproduction that may contribute to enhanced oxidative stress and inflammation. Our results suggest that galunisertib may represent an effective drug reducing abnormal oxidative stress induced by TGF-ß1 in PMF patients. DATABASE LINKING: GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103464.


Subject(s)
Antigens, CD34/metabolism , MicroRNAs/metabolism , Oxidative Stress , Primary Myelofibrosis/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Transforming Growth Factor beta1/metabolism , Antigens, CD34/analysis , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , Humans , MicroRNAs/genetics , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Superoxide Dismutase/genetics , Transcriptome
6.
Stem Cells Dev ; 27(4): 225-236, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29258411

ABSTRACT

Calreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and the retention of calcium. Recently, mutations affecting exon 9 of the CALR gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis. To shed light on the role of WT CALR during normal hematopoiesis, we performed gene silencing and overexpression experiments in hematopoietic stem progenitor cells (HSPCs). Our results showed that CALR overexpression is able to affect physiological hematopoiesis by enhancing both erythroid and megakaryocytic (MK) differentiation. In agreement with overexpression data, CALR silencing caused a significant decrease in both erythroid and MK differentiation of human HSPCs. Gene expression profiling (GEP) analysis showed that CALR is able to affect the expression of several genes involved in HSPC differentiation toward both the erythroid and MK lineages. Moreover, GEP data also highlighted the modulation of several genes involved in ER stress response, unfolded protein response (UPR), and DNA repair, and of several genes already described to play a role in MPN development, such as proinflammatory cytokines and hematological neoplasm-related markers. Altogether, our data unraveled a new and unexpected role for CALR in the regulation of normal hematopoietic differentiation. Moreover, by showing the impact of CALR on the expression of genes involved in several biological processes already described in cellular transformation, our data strongly suggest a more complex role for CALR in MPN development that goes beyond the activation of the THPO receptor and involves ER stress response, UPR, and DNA repair.

7.
Oncotarget ; 8(30): 49451-49469, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28533480

ABSTRACT

The development of Imatinib mesylate (IM), which targets the oncogenic BCR-ABL fusion protein, has greatly improved the outcome of Chronic Myeloid Leukemia (CML) patients. However, BCR-ABL-positive progenitors can be detected in CML patients in complete cytogenetic response. Several evidence suggests that CML stem cells are intrinsically resistant to Tyrosine Kinase Inhibitors (TKI), and therefore they represent the most likely candidate responsible for disease relapse.In this work, we investigated the microRNA (miRNA) expression profile of different subpopulations of CML Leukemic Stem Cells (LSCs): Lin-CD34+CD38- and Lin-CD34-CD38- cells. These cell fractions have been previously shown to be endowed with TKI intrinsic resistance. Our analysis identified 33 common deregulated miRNAs in CML LSCs. Among those, 8 miRNAs were deregulated in CML independently from BCR-ABL kinase activity and therefore are likely to be involved in the BCR-ABL-independent resistance to TKI that characterizes CML LSCs. In particular, the up-regulation of miR-29a-3p and miR-660-5p observed in CML LSCs, led to the down-regulation of their respective targets TET2 and EPAS1 and conferred TKI-resistance to CML LSCs in vitro. On the other hand, miR-494-3p down-regulation in CML LSCs, leading to c-MYC up-regulation, was able to decrease TKI-induced apoptosis. These results demonstrate that aberrant miRNA expression in CML LSCs could contribute to the intrinsic TKI-resistance observed in these cell populations, and support the development of novel therapies aimed at targeting aberrantly regulated miRNAs or their targets in order to effectively eradicate CML LSCs.


Subject(s)
Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , 3' Untranslated Regions , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Dioxygenases , Fusion Proteins, bcr-abl/genetics , Gene Expression Profiling , Gene Silencing , Genes, myc , Humans , Immunophenotyping , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , RNA Interference
8.
Oncotarget ; 8(13): 21380-21397, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28423484

ABSTRACT

Primary myelofibrosis (PMF) is a chronic Philadelphia-negative myeloproliferative neoplasm characterized by hematopoietic stem cell-derived clonal myeloproliferation, involving especially the megakaryocyte lineage. To better characterize how the altered expression of microRNAs might contribute to PMF pathogenesis, we have previously performed the integrative analysis of gene and microRNA expression profiles of PMF hematopoietic stem/progenitor cells (HSPCs), which allowed us to identify miR-494-3p as the upregulated microRNA predicted to target the highest number of downregulated mRNAs.To elucidate the role of miR-494-3p in hematopoietic differentiation, in the present study we demonstrated that miR-494-3p enforced expression in normal HSPCs promotes megakaryocytopoiesis. Gene expression profiling upon miR-494-3p overexpression allowed the identification of genes commonly downregulated both after microRNA overexpression and in PMF CD34+ cells. Among them, suppressor of cytokine signaling 6 (SOCS6) was confirmed to be a miR-494-3p target by luciferase assay. Western blot analysis showed reduced level of SOCS6 protein as well as STAT3 activation in miR-494-3p overexpressing cells. Furthermore, transient inhibition of SOCS6 expression in HSPCs demonstrated that SOCS6 silencing stimulates megakaryocytopoiesis, mimicking the phenotypic effects observed upon miR-494-3p overexpression. Finally, to disclose the contribution of miR-494-3p upregulation to PMF pathogenesis, we performed inhibition experiments in PMF HSPCs, which showed that miR-494-3p silencing led to SOCS6 upregulation and impaired megakaryocyte differentiation.Taken together, our results describe for the first time the role of miR-494-3p during normal HSPC differentiation and suggest that its increased expression, and the subsequent downregulation of its target SOCS6, might contribute to the megakaryocyte hyperplasia commonly observed in PMF patients.


Subject(s)
Hematopoietic Stem Cells/pathology , MicroRNAs/biosynthesis , Primary Myelofibrosis/pathology , Suppressor of Cytokine Signaling Proteins/metabolism , Thrombopoiesis/genetics , Blotting, Western , Electroporation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Polymerase Chain Reaction , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , Transcriptome
9.
Int J Mol Sci ; 18(1)2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28098757

ABSTRACT

Primary Myelofibrosis (PMF) is a chronic Philadelphia-negative myeloproliferative neoplasm characterized by a skewed megakaryopoiesis and an overproduction of proinflammatory and profibrotic mediators that lead to the development of bone marrow (BM) fibrosis. Since we recently uncovered the upregulation of miR-34a-5p in PMF CD34+ hematopoietic progenitor cells (HPCs), in order to elucidate its role in PMF pathogenesis here we unravelled the effects of miR-34a-5p overexpression in HPCs. We showed that enforced expression of miR-34a-5p partially constrains proliferation and favours the megakaryocyte and monocyte/macrophage commitment of HPCs. Interestingly, we identified lymphoid enhancer-binding factor 1 (LEF1) and nuclear receptor subfamily 4, group A, member 2 (NR4A2) transcripts as miR-34a-5p-targets downregulated after miR-34a-5p overexpression in HPCs as well as in PMF CD34+ cells. Remarkably, the knockdown of NR4A2 in HPCs mimicked the antiproliferative effects of miR-34a-5p overexpression, while the silencing of LEF1 phenocopied the effects of miR-34a-5p overexpression on HPCs lineage choice, by favouring the megakaryocyte and monocyte/macrophage commitment. Collectively our data unravel the role of miR-34a-5p in HPCs fate decision and suggest that the increased expression of miR-34a-5p in PMF HPCs could be important for the skewing of megakaryopoiesis and the production of monocytes, that are key players in BM fibrosis in PMF patients.


Subject(s)
Cell Lineage , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , MicroRNAs/metabolism , Primary Myelofibrosis/pathology , Antigens, CD34/metabolism , Case-Control Studies , Cell Differentiation , Cell Proliferation , Clone Cells , Down-Regulation/genetics , Gene Expression Profiling , Gene Silencing , Humans , Lymphoid Enhancer-Binding Factor 1/metabolism , Macrophages/metabolism , Macrophages/pathology , Megakaryocytes/metabolism , Megakaryocytes/pathology , MicroRNAs/genetics , Models, Biological , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Primary Myelofibrosis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Stem Cells Dev ; 25(19): 1433-43, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27520398

ABSTRACT

microRNAs are key regulators of gene expression that control stem cell fate by posttranscriptional downregulation of hundreds of target genes through seed pairing in their 3' untranslated region. In fact, miRNAs tightly regulate fundamental stem cell processes, like self-renewal, proliferation, and differentiation; therefore, miRNA deregulation may contribute to the development of solid tumors and hematological malignancies. miR-382-5p has been found to be upregulated in patients with myeloid neoplasms, but its role in normal hematopoiesis is still unknown. In this study, we demonstrated that miR-382-5p overexpression in CD34(+) hematopoietic stem/progenitor cells (HSPCs) leads to a significant decrease of megakaryocyte precursors coupled to increase of granulocyte ones. Furthermore, by means of a computational analysis using different prediction algorithms, we identified several putative mRNA targets of miR-382-5p that are downregulated upon miRNA overexpression (ie, FLI1, GATA2, MAF, MXD1, RUNX1, and SGK1). Among these, we validated MXD1 as real target of miR-382-5p by luciferase reporter assay. Finally, we showed that MXD1 knockdown mimics the effects of miR-382-5p overexpression on granulocyte and megakaryocyte differentiation of CD34(+) cells. Overall, our results demonstrated that miR-382-5p expression favors the expansion of granulocyte lineage and impairs megakaryocyte commitment through MXD1 downregulation. Therefore, our data showed for the first time that the miR-382-5p/MXD1 axis plays a critical role in myelopoiesis by affecting the lineage choice of CD34(+) HSPCs.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Differentiation , Down-Regulation , Hematopoietic Stem Cells/metabolism , MicroRNAs/metabolism , Repressor Proteins/genetics , Antigens, CD34/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Lineage/drug effects , Cell Lineage/genetics , Cells, Cultured , Clone Cells , Collagen/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Silencing/drug effects , Genes, Reporter , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Humans , Luciferases/metabolism , Methylcellulose/pharmacology , MicroRNAs/genetics , Repressor Proteins/metabolism , Reproducibility of Results
11.
Int J Cancer ; 138(7): 1657-69, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26547506

ABSTRACT

Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.


Subject(s)
Gene Dosage , HMGB2 Protein/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Primary Myelofibrosis/genetics , Chromosome Aberrations , Electroporation , Humans , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome , Polyamine Oxidase
13.
Blood ; 124(13): e21-32, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25097177

ABSTRACT

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , MicroRNAs/genetics , Primary Myelofibrosis/genetics , RNA, Messenger/genetics , Antigens, CD34/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Regulatory Networks , Gene Silencing , Granulocytes/metabolism , Hematopoietic Stem Cells/cytology , Humans , Megakaryocytes/cytology , Megakaryocytes/metabolism , Polycomb Repressive Complex 2/genetics , RNA Interference , Reproducibility of Results , Thrombopoiesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...