Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38991102

ABSTRACT

Engineered cardiac tissues show potential for regenerative therapy in ischemic heart disease. Yet, selection of soft biomaterials for scaffold manufacturing is primarily influenced by empirical and compositional factors, raising concerns about arrhythmic risks due to poor electrophysiological integration. Addressing this, we developed multiscale hybrid myocardial patches mimicking native myocardium's structural and biomechanical attributes, utilizing 3D printing and electrospinning techniques. We compared three patch types: pure silicone and silicone-poly(lactic-co-glycolic acid) (PLGA) with random (S-PLGA-R) and aligned (S-PLGA-A) fibers. S-PLGA-A patches with fiber orientation angles of 95-115° are achieved by applying a secondary electrical field using two parallel aluminum enhancers. With bulk and localized moduli of 350-750 and 13-20 kPa resembling the native myocardium, S-PLGA-A patches demonstrate a sarcomere length of 2.1 ± 0.2 µm, ≥50% higher strain motions and diastolic phase, and a 50-70% slower rise of calcium handling compared to the other two patches. This enhanced maturation and improved synchronization phenomena are attributed to efficient force transmission and reduced stress concentration due to mechanical similarity and linear propagation of electrical signals. This study presents a promising strategy for advancing regenerative cardiac therapies by harnessing the capabilities of 3D printing and electrospinning, providing a proof-of-concept for their effectiveness.

2.
J Membr Biol ; 250(3): 249-257, 2017 06.
Article in English | MEDLINE | ID: mdl-28417145

ABSTRACT

Several studies of the behavior in the voltage and frequency fluctuations of the neural electrical activity have been performed. Here, we explored the particular association between behavior of the voltage fluctuations in the inter-spike segment (VFIS) and the inter-spike intervals (ISI) of F1 pacemaker neurons from H. aspersa, by disturbing the intracellular calcium handling with cadmium and caffeine. The scaling exponent α of the VFIS, as provided by detrended fluctuations analysis, in conjunction with the corresponding duration of ISI to estimate the determination coefficient R 2 (48-50 intervals per neuron, N = 5) were all evaluated. The time-varying scaling exponent α(t) of VFIS was also studied (20 segments per neuron, N = 11). The R 2 obtained in control conditions was 0.683 ([0.647 0.776] lower and upper quartiles), 0.405 [0.381 0.495] by using cadmium, and 0.151 [0.118 0.222] with caffeine (P < 0.05). A non-uniform scaling exponent α(t) showing a profile throughout the duration of the VFIS was further identified. A significant reduction of long-term correlations by cadmium was confirmed in the first part of this profile (P = 0.0001), but no significant reductions were detected by using caffeine. Our findings endorse that the behavior of the VFIS appears associated to the activation of different populations of ionic channels, which establish the neural membrane potential and are mediated by the intracellular calcium handling. Thus, we provide evidence to consider that the behavior of the VFIS, as determined by the scaling exponent α, conveys insights into mechanisms regulating the excitability of pacemaker neurons.


Subject(s)
Action Potentials/drug effects , Helix, Snails/cytology , Helix, Snails/drug effects , Membrane Potentials/drug effects , Neurons/drug effects , Neurons/metabolism , Animals , Cadmium/pharmacology , Caffeine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...