Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Genomics ; 111(1): 10-16, 2019 01.
Article in English | MEDLINE | ID: mdl-26902887

ABSTRACT

This study examined whether differential DNA methylation is associated with clinical features of more aggressive disease at diagnosis and prostate cancer recurrence in African American men, who are more likely to die from prostate cancer than other populations. Tumor tissues from 76 African Americans diagnosed with prostate cancer who had radical prostatectomy as their primary treatment were profiled for epigenome-wide DNA methylation levels. Long-term follow-up identified 19 patients with prostate cancer recurrence. Twenty-three CpGs were differentially methylated (FDR q≤0.25, mean methylation difference≥0.10) in patients with vs. without recurrence, including CpGs in GCK, CDKL2, PRDM13, and ZFR2. Methylation differences were also observed between men with metastatic-lethal prostate cancer vs. no recurrence (five CpGs), regional vs. local pathological stage (two CpGs), and higher vs. lower tumor aggressiveness (one CpG). These results indicate that differentially methylated CpG sites identified in tumor tissues of African American men may contribute to prostate cancer aggressiveness.


Subject(s)
Black or African American , DNA Methylation , Disease Progression , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics , Adult , Aged , CpG Islands , Epigenomics , Genetic Profile , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Progression-Free Survival , Prostatectomy , Prostatic Neoplasms/therapy
2.
Genet Mol Biol ; 41(1 suppl 1): 206-214, 2018.
Article in English | MEDLINE | ID: mdl-29668018

ABSTRACT

In spite of many genetic studies that contributed for a deep knowledge about the peopling of the Americas, no consensus has emerged about important parameters such as the effective size of the Native Americans founder population. Previous estimates based on genomic datasets may have been biased by the use of admixed individuals from Latino populations, while other recent studies using samples from Native American individuals relied on approximated analytical approaches. In this study we use resequencing data for nine independent regions in a set of Native American and Siberian individuals and a full-likelihood approach based on isolation-with-migration scenarios accounting for recent flow between Asian and Native American populations. Our results suggest that, in agreement with previous studies, the effective size of the Native American population was small, most likely in the order of a few hundred individuals, with point estimates close to 250 individuals, even though credible intervals include a number as large as ~4,000 individuals. Recognizing the size of the genetic bottleneck during the peopling of the Americas is important for determining the extent of genetic markers needed to characterize Native American populations in genome-wide studies and to evaluate the adaptive potential of genetic variants in this population.

3.
Genet. mol. biol ; 41(1,supl.1): 206-214, 2018. tab, graf
Article in English | LILACS | ID: biblio-892481

ABSTRACT

Abstract In spite of many genetic studies that contributed for a deep knowledge about the peopling of the Americas, no consensus has emerged about important parameters such as the effective size of the Native Americans founder population. Previous estimates based on genomic datasets may have been biased by the use of admixed individuals from Latino populations, while other recent studies using samples from Native American individuals relied on approximated analytical approaches. In this study we use resequencing data for nine independent regions in a set of Native American and Siberian individuals and a full-likelihood approach based on isolation-with-migration scenarios accounting for recent flow between Asian and Native American populations. Our results suggest that, in agreement with previous studies, the effective size of the Native American population was small, most likely in the order of a few hundred individuals, with point estimates close to 250 individuals, even though credible intervals include a number as large as ~4,000 individuals. Recognizing the size of the genetic bottleneck during the peopling of the Americas is important for determining the extent of genetic markers needed to characterize Native American populations in genome-wide studies and to evaluate the adaptive potential of genetic variants in this population.

4.
Mol Oncol ; 11(2): 140-150, 2017 02.
Article in English | MEDLINE | ID: mdl-28145099

ABSTRACT

Prognostic biomarkers are needed to distinguish patients with clinically localized prostate cancer (PCa) who are at high risk of metastatic progression. The tumor transcriptome may reveal its aggressiveness potential and have utility for predicting adverse patient outcomes. Genomewide gene expression levels were measured in primary tumor samples of 383 patients in a population-based discovery cohort, and from an independent clinical validation dataset of 78 patients. Patients were followed for ≥ 5 years after radical prostatectomy to ascertain outcomes. Area under the receiver-operating characteristic curve (AUC), partial AUC (pAUC, 95% specificity), and P-value criteria were used to detect and validate the differentially expressed transcripts. Twenty-three differentially expressed transcripts in patients with metastatic-lethal compared with nonrecurrent PCa were validated (P < 0.05; false discovery rate < 0.20) in the independent dataset. The addition of each validated transcript to a model with Gleason score showed that 17 transcripts significantly improved the AUC (range: 0.83-0.88; all P-values < 0.05). These differentially expressed mRNAs represent genes with diverse cellular functions related to tumor aggressiveness. This study validated 23 gene transcripts for predicting metastatic-lethal PCa in patients surgically treated for clinically localized disease. Several of these mRNA biomarkers have clinical potential for identifying the subset of PCa patients with more aggressive tumors who would benefit from closer monitoring and adjuvant therapy.


Subject(s)
Biomarkers, Tumor/genetics , Databases, Nucleic Acid , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Transcriptome , Adult , Biomarkers, Tumor/biosynthesis , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Metastasis , Prostatectomy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/surgery , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis
5.
Clin Cancer Res ; 23(1): 311-319, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27358489

ABSTRACT

PURPOSE: Aside from Gleason sum, few factors accurately identify the subset of prostate cancer patients at high risk for metastatic progression. We hypothesized that epigenetic alterations could distinguish prostate tumors with life-threatening potential. EXPERIMENTAL DESIGN: Epigenome-wide DNA methylation profiling was performed in surgically resected primary tumor tissues from a population-based (n = 430) and a replication (n = 80) cohort of prostate cancer patients followed prospectively for at least 5 years. Metastasis was confirmed by positive bone scan, MRI, CT, or biopsy, and death certificates confirmed cause of death. AUC, partial AUC (pAUC, 95% specificity), and P value criteria were used to select differentially methylated CpG sites that robustly stratify patients with metastatic-lethal from nonrecurrent tumors, and which were complementary to Gleason sum. RESULTS: Forty-two CpG biomarkers stratified patients with metastatic-lethal versus nonrecurrent prostate cancer in the discovery cohort, and eight of these CpGs replicated in the validation cohort based on a significant (P < 0.05) AUC (range, 0.66-0.75) or pAUC (range, 0.007-0.009). The biomarkers that improved discrimination of patients with metastatic-lethal prostate cancer include CpGs in five genes (ALKBH5, ATP11A, FHAD1, KLHL8, and PI15) and three intergenic regions. In the validation dataset, the AUC for Gleason sum alone (0.82) significantly increased with the addition of four individual CpGs (range, 0.86-0.89; all P <0.05). CONCLUSIONS: Eight differentially methylated CpGs that distinguish patients with metastatic-lethal from nonrecurrent tumors were validated. These novel epigenetic biomarkers warrant further investigation as they may improve prognostic classification of patients with clinically localized prostate cancer and provide new insights on tumor aggressiveness. Clin Cancer Res; 23(1); 311-9. ©2016 AACR.


Subject(s)
Biomarkers, Tumor , DNA Methylation , Epigenesis, Genetic , Epigenomics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/mortality , Adult , Aged , Alleles , CpG Islands , Disease Progression , Epigenomics/methods , Gene Expression Profiling , Genome-Wide Association Study , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , ROC Curve , Recurrence , Reproducibility of Results
6.
Cancer ; 122(14): 2168-77, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27142338

ABSTRACT

BACKGROUND: DNA methylation has been hypothesized as a mechanism for explaining the association between smoking and adverse prostate cancer (PCa) outcomes. This study was aimed at assessing whether smoking is associated with prostate tumor DNA methylation and whether these alterations may explain in part the association of smoking with PCa recurrence and mortality. METHODS: A total of 523 men had radical prostatectomy as their primary treatment, detailed smoking history data, long-term follow-up for PCa outcomes, and tumor tissue profiled for DNA methylation. Ninety percent of the men also had matched tumor gene expression data. A methylome-wide analysis was conducted to identify differentially methylated regions (DMRs) by smoking status. To select potential functionally relevant DMRs, their correlation with the messenger RNA (mRNA) expression of corresponding genes was evaluated. Finally, a smoking-related methylation score based on the top-ranked DMRs was created to assess its association with PCa outcomes. RESULTS: Forty DMRs were associated with smoking status, and 10 of these were strongly correlated with mRNA expression (aldehyde oxidase 1 [AOX1], claudin 5 [CLDN5], early B-cell factor 1 [EBF1], homeobox A7 [HOXA7], lectin galactoside-binding soluble 3 [LGALS3], microtubule-associated protein τ [MAPT], protocadherin γ A [PCDHGA]/protocadherin γ B [PCDHGB], paraoxonase 3 [PON3], synaptonemal complex protein 2 like [SYCP2L], and zinc finger and SCAN domain containing 12 [ZSCAN12]). Men who were in the highest tertile for the smoking-methylation score derived from these DMRs had a higher risk of recurrence (odds ratio [OR], 2.29; 95% confidence interval [CI], 1.42-3.72) and lethal disease (OR, 4.21; 95% CI, 1.65-11.78) in comparison with men in the lower 2 tertiles. CONCLUSIONS: This integrative molecular epidemiology study supports the hypothesis that smoking-associated tumor DNA methylation changes may explain at least part of the association between smoking and adverse PCa outcomes. Future studies are warranted to confirm these findings and understand the implications for improving patient outcomes. Cancer 2016;122:2168-77. © 2016 American Cancer Society.


Subject(s)
DNA Methylation , Prostatic Neoplasms/etiology , Prostatic Neoplasms/mortality , Smoking , Adult , Aged , CpG Islands , Epigenesis, Genetic , Gene Expression Profiling , Humans , Male , Middle Aged , Mortality , Neoplasm Grading , Neoplasm Recurrence, Local , Odds Ratio , Patient Outcome Assessment , Prognosis , Prostatectomy , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/surgery , Smoking/adverse effects
7.
Mult Scler ; 22(13): 1655-1664, 2016 11.
Article in English | MEDLINE | ID: mdl-26819262

ABSTRACT

BACKGROUND: Infection with the Epstein-Barr virus (EBV) is associated with an increased risk of multiple sclerosis (MS). OBJECTIVE: We sought genetic loci influencing EBV nuclear antigen-1 (EBNA-1) IgG titers and hypothesized that they may play a role in MS risk. METHODS: We performed a genome-wide association study (GWAS) of anti-EBNA-1 IgG titers in 3599 individuals from an unselected twin family cohort, followed by a meta-analysis with data from an independent EBNA-1 GWAS. We then examined the shared polygenic risk between the EBNA-1 GWAS (effective sample size (Neff) = 5555) and a large MS GWAS (Neff = 15,231). RESULTS: We identified one locus of strong association within the human leukocyte antigen (HLA) region, of which the most significantly associated genotyped single nucleotide polymorphism (SNP) was rs2516049 (p = 4.11 × 10-9). A meta-analysis including data from another EBNA-1 GWAS in a cohort of Mexican-American families confirmed that rs2516049 remained the most significantly associated SNP (p = 3.32 × 10-20). By examining the shared polygenic risk, we show that the genetic risk for elevated anti-EBNA-1 titers is positively correlated with the development of MS, and that elevated EBNA-1 titers are not an epiphenomena secondary to MS. In the joint meta-analysis of EBNA-1 titers and MS, loci at 1p22.1, 3p24.1, 3q13.33, and 10p15.1 reached genome-wide significance (p < 5 × 10-8). CONCLUSIONS: Our results suggest that apart from the confirmed HLA region, the association of anti-EBNA-1 IgG titer with MS risk is also mediated through non-HLA genes, and that studies aimed at identifying genetic loci influencing EBNA immune response provides a novel opportunity to identify new and characterize existing genetic risk factors for MS.


Subject(s)
Epstein-Barr Virus Nuclear Antigens , Genome-Wide Association Study , Multiple Sclerosis/etiology , Genetic Loci , Humans , Risk
8.
Prostate ; 75(13): 1354-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25990700

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is clinically and biologically heterogeneous, making it difficult to predict at detection whether it will take an indolent or aggressive disease course. Cell cycle-regulated genes may be more highly expressed in actively dividing cells, with transcript levels reflecting tumor growth rate. Here, we evaluated expression of cell cycle genes in relation to PCa outcomes in a population-based cohort. METHODS: Gene expression data were generated from tumor tissues obtained at radical prostatectomy for 383 population-based patients (12.3-years average follow-up). The overall mean and individual transcript levels of 30 selected cell cycle genes was compared between patients with no evidence of recurrence (73%) and those who recurred (27%) or died (7%) from PCa. RESULTS: The multivariate adjusted hazard ratio (HR) for a change from the 25th to 75th percentile of mean gene expression level (range 8.02-10.05) was 1.25 (95%CI 0.96-1.63; P = 0.10) for PCa recurrence risk, and did not vary substantially by Gleason score, TMPRSS2-ERG fusion status, or family history of PCa. For lethal PCa, the HR for a change (25th to 75th percentile) in mean gene expression level was 2.04 (95%CI 1.26-3.31; P = 0.004), adjusted for clinicopathological variables. The ROC curve for mean gene expression level alone (AUC = 0.740) did not perform as well as clinicopathological variables alone (AUC = 0.803) for predicting lethal PCa, and the addition of mean gene expression to clinicopathological variables did not substantially improve prediction (AUC = 0.827; P = 0.18). Higher TK1 expression was strongly associated with both recurrent (P = 6.7 × 10(-5)) and lethal (P = 6.4 × 10(-6)) PCa. CONCLUSIONS: Mean expression level for 30 selected cell cycle-regulated genes was unrelated to recurrence risk, but was associated with a twofold increase in risk of lethal PCa. However, gene expression had less discriminatory accuracy than clinical variables alone for predicting lethal events. Transcript levels for several genes in the panel were significantly overexpressed in lethal versus non-recurrent PCa.


Subject(s)
Adenocarcinoma/pathology , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , Adenocarcinoma/genetics , Aged , Disease Progression , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/genetics , Prognosis , Prostate/pathology , Prostatic Neoplasms/genetics
9.
Eur J Hum Genet ; 23(11): 1544-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25758998

ABSTRACT

Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10(-8)). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels.


Subject(s)
Antibodies, Bacterial/genetics , Antibodies, Viral/genetics , Immunoglobulin G/immunology , Infections/genetics , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Bacteria/classification , Bacteria/immunology , Bacteria/pathogenicity , Genetic Linkage , Genome-Wide Association Study , Humans , Immunoglobulin G/blood , Infections/blood , Infections/microbiology , Infections/virology , Lod Score , Polymorphism, Single Nucleotide , Risk Factors , Viruses/classification , Viruses/immunology , Viruses/pathogenicity
10.
BMC Proc ; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo): S66, 2014.
Article in English | MEDLINE | ID: mdl-25519398

ABSTRACT

The concept of breeding values, an individual's phenotypic deviation from the population mean as a result of the sum of the average effects of the genes they carry, is of great importance in livestock, aquaculture, and cash crop industries where emphasis is placed on an individual's potential to pass desirable phenotypes on to the next generation. As breeding or genetic values (as referred to here) cannot be measured directly, estimated genetic values (EGVs) are based on an individual's own phenotype, phenotype information from relatives, and, increasingly, genetic data. Because EGVs represent additive genetic variation, calculating EGVs in an extended human pedigree is expected to provide a more refined phenotype for genetic analyses. To test the utility of EGVs in genome-wide association, EGVs were calculated for 847 members of 20 extended Mexican American families based on 100 replicates of simulated systolic blood pressure. Calculations were performed in GAUSS to solve a variation on the standard Best Linear Unbiased Predictor (BLUP) mixed model equation with age, sex, and the first 3 principal components of sample-wide genetic variability as fixed effects and the EGV as a random effect distributed around the relationship matrix. Three methods of calculating kinship were considered: expected kinship from pedigree relationships, empirical kinship from common variants, and empirical kinship from both rare and common variants. Genome-wide association analysis was conducted on simulated phenotypes and EGVs using the additive measured genotype approach in the SOLAR software package. The EGV-based approach showed only minimal improvement in power to detect causative loci.

11.
Genet Epidemiol ; 38(5): 439-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24962563

ABSTRACT

Increased immunoglobulin G (IgG) response to dietary antigens can be associated with gastrointestinal dysfunction and autoimmunity. The underlying processes contributing to these adverse reactions remain largely unknown, and it is likely that genetic factors play a role. Here, we estimate heritability and attempt to localize genetic factors influencing IgG antibody levels against food-derived antigens using an integrative genomics approach. IgG antibody levels were determined by ELISA in >1,300 Mexican Americans for the following food antigens: wheat gliadin; bovine casein; and two forms of bovine serum albumin (BSA-a and BSA-b). Pedigree-based variance components methods were used to estimate additive genetic heritability (h(2) ), perform genome-wide association analyses, and identify transcriptional signatures (based on 19,858 transcripts from peripheral blood lymphocytes). Heritability estimates were significant for all traits (0.15-0.53), and shared environment (based on shared residency among study participants) was significant for casein (0.09) and BSA-a (0.33). Genome-wide significant evidence of association was obtained only for antibody to gliadin (P = 8.57 × 10(-8) ), mapping to the human leukocyte antigen II region, with HLA-DRA and BTNL2 as the best candidate genes. Lack of association of known celiac disease risk alleles HLA-DQ2.5 and -DQ8 with antigliadin antibodies in the studied population suggests a separate genetic etiology. Significant transcriptional signatures were found for all IgG levels except BSA-b. These results demonstrate that individual genetic differences contribute to food antigen antibody measures in this population. Further investigations may elucidate the underlying immunological processes involved.


Subject(s)
Antibodies/immunology , Food Hypersensitivity/genetics , Gene Expression Profiling , Genome-Wide Association Study , Animals , Antibodies/genetics , Butyrophilins , Caseins/immunology , Cattle , Celiac Disease/genetics , Environment , Enzyme-Linked Immunosorbent Assay , Food Hypersensitivity/immunology , Gliadin/immunology , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Membrane Glycoproteins/genetics , Mexican Americans/genetics , Pedigree , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , Serum Albumin, Bovine/immunology
13.
Genet Epidemiol ; 37(7): 751-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23798484

ABSTRACT

This paper describes genetic investigations of seroreactivity to five common infectious pathogens in the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Antibody titers and seroprevalence were available for 495 to 782 (depending on the phenotype) family members at two time points, approximately 15 years apart, for Chlamydophila pneumoniae, Helicobacter pylori, cytomegalovirus (CMV), herpes simplex virus 1 (HSV-1), and herpes simplex virus 2 (HSV-2). Seroprevalence rates indicate that infections with most of these pathogens are common (≥20% for all of them, >80% for H. pylori, CMV, and HSV-1). Seropositive individuals typically remain seropositive over time, with seroreversion rates of <1% to 10% over ∼15 years. Antibody titers were significantly heritable for most pathogens, with the highest estimate being 0.61 for C. pneumoniae. Significant genome-wide linkage evidence was obtained for C. pneumoniae on chromosome 15 (logarithm of odds, LOD score of 3.13). These results demonstrate that individual host genetic differences influence antibody measures of common infections in this population, and further investigation may elucidate the underlying immunological processes and genes involved.


Subject(s)
Antibodies, Bacterial/blood , Antibodies, Viral/blood , Coronary Artery Disease/genetics , Health Surveys , Indians, North American/genetics , Infections/genetics , Infections/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Alaska , C-Reactive Protein/analysis , Chlamydophila pneumoniae/immunology , Chlamydophila pneumoniae/isolation & purification , Chromosomes, Human, Pair 15/genetics , Chronic Disease , Coronary Artery Disease/microbiology , Coronary Artery Disease/virology , Cytomegalovirus/immunology , Cytomegalovirus/isolation & purification , Female , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Helicobacter pylori/immunology , Helicobacter pylori/isolation & purification , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/isolation & purification , Herpesvirus 2, Human/immunology , Herpesvirus 2, Human/isolation & purification , Humans , Immunoglobulin G/blood , Infections/microbiology , Infections/virology , Lod Score , Male , Middle Aged , Pedigree , Seroepidemiologic Studies , Serologic Tests , Time Factors , Young Adult
14.
PLoS Genet ; 9(1): e1003147, 2013.
Article in English | MEDLINE | ID: mdl-23326239

ABSTRACT

Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10(-15) for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.


Subject(s)
Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/blood , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Herpesvirus 4, Human , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies/genetics , Epstein-Barr Virus Infections/blood , Female , Genetic Linkage , Genome-Wide Association Study , HLA-DQ beta-Chains/immunology , HLA-DRB1 Chains/immunology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Hodgkin Disease/genetics , Hodgkin Disease/virology , Humans , Immunoglobulin G/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/virology , Male , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/virology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/virology , Polymorphism, Single Nucleotide
15.
Diabetes Care ; 36(3): 701-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23160725

ABSTRACT

OBJECTIVE: Ad36, a human adenovirus, increases adiposity but improves glycemic control in animal models. Similarly, natural Ad36 infection is cross-sectionally associated with greater adiposity and better glycemic control in humans. This study compared longitudinal observations in indices of adiposity (BMI and body fat percentage) and glycemic control (fasting glucose and insulin) in Ad36-infected versus uninfected adults. RESEARCH DESIGN AND METHODS: Baseline sera from Hispanic men and women (n = 1,400) were screened post hoc for the presence of Ad36-specific antibodies. Indices of adiposity and glycemic control at baseline and at ~10 years past the baseline were compared between seropositive and seronegative subjects, with adjustment for age and sex. In addition to age and sex, indices of glycemic control were adjusted for baseline BMI and were analyzed only for nondiabetic subjects. RESULTS: Seropositive subjects (14.5%) had greater adiposity at baseline, compared with seronegative subjects. Longitudinally, seropositive subjects showed greater adiposity indices but lower fasting insulin levels. Subgroup analyses revealed that Ad36-seropositivity was associated with better baseline glycemic control and lower fasting insulin levels over time in the normal-weight group (BMI ≤25 kg/m(2)) and longitudinally, with greater adiposity in the overweight (BMI 25-30 kg/m(2)) and obese (BMI >30 kg/m(2)) men. Statistically, the differences between seropositive and seronegative individuals were modest in light of the multiple tests performed. CONCLUSIONS: This study strengthens the plausibility that in humans, Ad36 increases adiposity and attenuates deterioration of glycemic control. Panoptically, the study raises the possibility that certain infections may modulate obesity or diabetes risk. A comprehensive understanding of these under-recognized factors is needed to effectively combat such metabolic disorders.


Subject(s)
Adenoviridae Infections/complications , Adiposity/physiology , Blood Glucose/metabolism , Adenoviridae Infections/epidemiology , Adult , Body Mass Index , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Obesity/blood , Obesity/epidemiology , Obesity/etiology , Young Adult
16.
BMC Res Notes ; 4: 433, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22018212

ABSTRACT

BACKGROUND: Infection risks vary among individuals and between populations. Here we present information on the seroprevalence of 13 common infectious agents in a San Antonio-based sample of Mexican Americans. Mexican Americans represent the largest and most rapidly growing minority population in the U.S., and they are also considered a health disparities population. METHODS: We analyzed 1227 individuals for antibody titer to Chlamydophila pneumoniae, Helicobacter pylori, Toxoplasma gondii, cytomegalovirus, Epstein-Barr virus, herpes simplex virus-1, herpes simplex virus-2 (HSV-2), human herpesvirus-6 (HHV-6), varicella zoster virus (VZV), adenovirus-36, hepatitis A virus, and influenza A and B. Seroprevalence was examined as a function of sex, age, household income, and education. RESULTS: Seroprevalence estimates ranged from 9% for T. gondii to 92% for VZV, and were similar in both sexes except for HSV-2, which was more prevalent in women. Many pathogens exhibited a significant seroprevalence change over the examined age range (15-94 years), with 7 pathogens increasing and HHV-6 decreasing with age. Socioeconomic status significantly correlated with serostatus for some pathogens. CONCLUSIONS: Our findings demonstrate substantial seroprevalence rates of these common infections in this sample of Mexican Americans from San Antonio, Texas that suffers from high rates of chronic diseases including obesity and type-2 diabetes.

17.
Hum Hered ; 72(2): 133-41, 2011.
Article in English | MEDLINE | ID: mdl-21996708

ABSTRACT

BACKGROUND/AIMS: Antibodies against infectious pathogens provide information on past or present exposure to infectious agents. While host genetic factors are known to affect the immune response, the influence of genetic factors on antibody levels to common infectious agents is largely unknown. Here we test whether antibody levels for 13 common infections are significantly heritable. METHODS: IgG antibodies to Chlamydophila pneumoniae, Helicobacter pylori, Toxoplasma gondii, adenovirus 36 (Ad36), hepatitis A virus, influenza A and B, cytomegalovirus, Epstein-Barr virus, herpes simplex virus (HSV)-1 and -2, human herpesvirus-6, and varicella zoster virus were determined for 1,227 Mexican Americans. Both quantitative and dichotomous (seropositive/seronegative) traits were analyzed. Influences of genetic and shared environmental factors were estimated using variance components pedigree analysis, and sharing of underlying genetic factors among traits was investigated using bivariate analyses. RESULTS: Serological phenotypes were significantly heritable for most pathogens (h(2) = 0.17-0.39), except for Ad36 and HSV-2. Shared environment was significant for several pathogens (c(2) = 0.10-0.32). The underlying genetic etiology appears to be largely different for most pathogens. CONCLUSIONS: Our results demonstrate, for the first time for many of these pathogens, that individual genetic differences of the human host contribute substantially to antibody levels to many common infectious agents, providing impetus for the identification of underlying genetic variants, which may be of clinical importance.


Subject(s)
Antibodies, Bacterial/blood , Antibodies, Viral/blood , Bacterial Infections/genetics , Mexican Americans/genetics , Virus Diseases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Bacterial/immunology , Antibodies, Viral/immunology , Bacteria/immunology , Bacteria/pathogenicity , Bacterial Infections/immunology , Female , Gene-Environment Interaction , Humans , Male , Middle Aged , Models, Statistical , Neutralization Tests , Pedigree , Seroepidemiologic Studies , Virus Diseases/immunology , Viruses/immunology , Viruses/pathogenicity , Young Adult
19.
Am J Phys Anthropol ; 143(1): 62-74, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20333712

ABSTRACT

This study investigates the genetic structure of the present-day inhabitants of Beringia in order to answer questions concerning their origins and evolution. According to recent studies, the ancestors of Native Americans paused for a time in Beringia, during which they differentiated genetically from other Asians before peopling the New World. Furthermore, the Koryaks of Kamchatka share a "ubiquitous" allele (D9S1120) with Native Americans, indicating they may have descended from the same ancestral Beringian population that gave rise to the New World founders. Our results show that a genetic barrier exists between Kamchatkans (Koryaks and Even) and Bering Island inhabitants (Aleuts, mixed Aleuts, and Russians), based on Analysis of Molecular Variance (AMOVA) and structure analysis of nine autosomal short tandem repeats (STRs). This is supported by mitochondrial DNA evidence, but not by analysis of Y chromosome markers, as recent non-native male admixture into the region appears to have partially obscured ancient population relationships. Our study indicates that while Aleuts are descended from the original New World founders, the Koryaks are unlikely to represent a Beringian remnant of the ancestral population that gave rise to Native Americans. They are instead, like the Even, more recent arrivals to Kamchatka from interior Siberia, and the "ubiquitous" allele in Koryaks may result from recent gene flow from Chukotka. Genbank accession numbers for mtDNA sequences: GQ922935-GQ922973.


Subject(s)
Asian People/genetics , Chromosomes, Human, Y , DNA, Mitochondrial/genetics , Genetic Markers/genetics , Inuit/genetics , Alaska , American Indian or Alaska Native/genetics , Analysis of Variance , Blood Buffy Coat/chemistry , Emigration and Immigration , Gene Frequency , Genetics, Population , Humans , Male , Markov Chains , Microsatellite Repeats , Molecular Sequence Data , Monte Carlo Method , Siberia
20.
Hum Biol ; 82(5-6): 653-75, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21417888

ABSTRACT

Recent research indicates that anthropometrics can be used to study microevolutionary forces acting on humans. We examine the use of morphological traits in reconstructing the population history of Aleuts and Eskimos of the Bering Sea. From 1979 to 1981, W. S. Laughlin measured a sample of St. Lawrence Island Eskimos and Pribilof Island Aleuts. These samples included adult participants from St. George and St. Paul in the Pribilof Islands and from Gambell and Savoonga on St. Lawrence Island. The Relethford-Blangero method was used to examine the phylogenetic relationship between Aleuts and Eskimos. Anthropometric measurements for Native North Americans (measured by Boas and a team of trained anthropometrists in 1890-1904) and Native Mesoamericans (compiled from the literature for 1898-1952) were used for comparison. A principal components analysis of means for measurements and a neighbor-joining tree were constructed using Euclidean distances. All these tests revealed the same strong relationship among the focus populations. The R matrix from the Relethford-Blangero method clusters Aleuts and Eskimos separately and accounts for 97.3% of the variation in the data. Phenotypic variation within the population is minimal and therefore minimum F(ST) values are low. Genetic distances were compared to a Euclidean distance matrix of anthropometric measurements using a Mantel test and gave a high but not significant correlation. Our results provide evidence of a close phylogenetic relationship between Aleut and Eskimo populations in the Bering Sea. However, it is apparent that history has affected the relationship among the populations. Despite previous findings of higher European admixture in Gambell (based on blood group markers) than in Savoonga, Savoonga has greater within-group variation in anthropometric measurements. Anthropometrics reveal a close relationship between Gambell and St. Paul as a result of European admixture. The St. George population was the most divergent of the populations, indicating that it diverged from the Eskimos and St. Paul because of the compounding effects of genetic drift and limited European gene flow. These findings are in agreement with previous anthropometric and genetic studies of the Aleut and Eskimo populations and support the utility of anthropometrics in inferring population history and structure.


Subject(s)
Anthropometry , Inuit/statistics & numerical data , Alaska , Female , Humans , Inuit/genetics , Male , Phenotype , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...