Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 104(Pt A): 197-203, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28587960

ABSTRACT

Controlled release of antimicrobial and antioxidant compounds from packaging films is of utmost importance for extending the shelf-life of perishable foods. This study focused on the mathematical modeling of gallic acid release into an aqueous medium from three chitosan films, formulated with grape seed extract (GSE) and carvacrol. We quantified the release by HPLC technique during 30days at three temperatures (5, 25 and 45°C). The diffusion coefficients, varying with temperature according to an Arrhenius-type relationship, and the respective activation energies for Film-1 and Film-2 were, respectively [Formula: see text] m2s-1 and [Formula: see text] m2s-1, Ea1=58kJmol-1 and Ea2=60kJmol-1 as obtained from the Fickian fit. The low concentrations of gallic acid released by Film-3 could not be detected by HPLC, therefore the respective diffusion coefficient was not estimated. This study will help with the development and optimization of active packaging (AP) films aiming at improved food preservation and shelf-life extension.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Drug Liberation , Gallic Acid/chemistry , Grape Seed Extract/chemistry , Models, Chemical , Monoterpenes/chemistry , Cymenes , Temperature , Water/chemistry
2.
Food Sci Biotechnol ; 26(6): 1763-1772, 2017.
Article in English | MEDLINE | ID: mdl-30263716

ABSTRACT

The release of microencapsulated natural antimicrobial (AM) agents (thymol and carvacrol) from two encapsulating matrixes [maltodextrin (MD) and soy protein (SP)] were evaluated for possible use in food packaging coatings. Microcapsules were prepared by oil-in-water (O/W) emulsions at different concentrations (10, 20% for MD and 2, 5% for SP). High encapsulation efficiency ranged from 96 to 99.95% for MD and 93.1 to 100% for SP, with average microcapsule diameters that ranged from 17 to 27.5 and 18.8 to 38 µm, respectively. The release rate with 20% MD-thymol [20MD-T] was faster than with 10% MD-thymol [10MD-T]. Similar results were obtained for carvacrol with the same concentration of MD. Korsmeyer-Peppas and Weibull mathematical models were successfully fitted to the release of the AM agents, describing the Fickian diffusion release of the components. Different release rates were obtained as a function of the chemical nature of the encapsulation material and its concentration.

3.
Carbohydr Polym ; 123: 27-38, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25843831

ABSTRACT

The objective of this research was to study the effect of the film microstructure of oil-in-water emulsions stabilized by hydroxypropyl methyl cellulose/whey protein isolate (HPMC/WPI) with or without sodium dodecyl sulfate (SDS) over physical properties of HPMC/WPI emulsion-based films. The films were prepared with different HPMC/WPI-oil-SDS combinations (%w/w for 100g of dispersion): HPMC; WPI; HPMC/1WPI-0.5-SDS; HPMC/1WPI-1; HPMC/2WPI-0.5; HPMC/2WPI-1-SDS. Physical properties of films were evaluated. The results showed no statistical differences (p>0.05) between the thicknesses of EFs (0.156 ± 0.004 mm). The effect of oil content and incorporation of SDS showed the inverse trend for WI and ΔE, the increasing order of change, for WI and ΔE, among the formulation evaluated was: HPMC/1WPI-1>HPMC/2WPI-0.5>HPMC/2WPI-1.0-SDS≈HPMC/1WPI-0.5-SDS≈WPI>HPMC for WI and HPMC/1WPI-0.5-SDS>HPMC/2WPI-1.0-SDS>HPMC/2WPI-0.5>HPMC/1WPI-1 for ΔE, respectively. The addition of oil and SDS decreased the TS and EB, because oil addition into EF induces the development of structural discontinuities, producing an EF with less chain mobility, and consequently, with less flexibility and resistance to fracture.


Subject(s)
Hypromellose Derivatives/chemistry , Whey Proteins/chemistry , Emulsions , Sodium Dodecyl Sulfate/chemistry , Tensile Strength , Viscosity , Water/chemistry
4.
Int J Food Microbiol ; 146(2): 144-50, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21411168

ABSTRACT

The aim of the present study was to determine the antimicrobial (AM) properties of plastic flexible films with a coating of microcapsules containing carvacrol and thymol as natural AM agents. Microencapsulation of these agents enables their controlled release and leads to the destruction (or growth inhibition) of a broad spectrum of microorganisms such as, Escherichia coli O157:H7, Staphylococcus aureus, Listeria innocua, Saccharomyces cerevisiae and Aspergillus niger. It was found that the studied AM agents are strong inhibitors to the growth of mycelium, but they were not effective against spore germination of mold. Thymol (T) and carvacrol (C) showed a significant AM activity against the studied microorganisms, with minimal inhibitory concentrations (MIC) of 125-250 ppm and 75-375 ppm for thymol and carvacrol respectively. The synergistic effect of combinations of thymol and carvacrol was also studied and it was found that the highest synergism was achieved at a concentration of 50% T and 50% C. The release of the AM agents was carried out at 4°C during 28 days. The concentration of the microencapsulated AM agents showed a range of zones of inhibition of 4.3-11.3mm for the microorganisms at 10% of thymol and 10% of carvacrol. At these concentrations the release of the AM agents (within 48 h) was greater than required for the most resistant microorganism (E .coli O157:H7), as reflected by the relatively large zone of inhibition. The results of the present study confirm the suitability of using microencapsulated thymol and carvacrol incorporated in polymer films for AM food packaging.


Subject(s)
Anti-Infective Agents/pharmacology , Food Packaging , Monoterpenes/pharmacology , Thymol/pharmacology , Cymenes , Drug Synergism , Escherichia coli O157/drug effects , Fungi/drug effects , Listeria/drug effects , Microbial Sensitivity Tests , Polypropylenes/chemistry , Spores, Fungal/drug effects , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...