Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 212: 323-333, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30832864

ABSTRACT

Gut pathogenic enterohemorrhagic Escherichia coli (EHEC) release Shiga toxins (Stxs) as major virulence factors, which bind to globotriaosylceramide (Gb3Cer, Galα1-4 Galß1-4Glcß1-1Cer) on human target cells. The aim of this study was the production of neoglycolipids (neoGLs) using citrus pectin-derived oligosaccharides and their application as potential inhibitors of Stxs. The preparation of neoGLs starts with the reduction of the carboxylic acid group of the pectic poly(α1-4)GalUA core structure to the corresponding alcohol, followed by hydrolytic cleavage of resulting poly(α1-4)Gal into (α1-4)Galn oligosaccharides and their linkage to phosphatidylethanolamine (PE). Thin-layer chromatography overlay assays of the produced (α1-4)Galn-PE and corresponding Amadori (α1-4)Galn=PE neoGLs revealed distinguishable binding patterns for Stx1a, Stx2a, and Stx2e. Furthermore, prepared neoGLs protected Vero cells against the cytotoxic action of Stxs when applied as multivalent glycovesicles. The produced neoGLs are applicable for differentiation of Stx subtypes and represent a promising approach to combat infections of EHEC by blocking their major toxins.


Subject(s)
Glycolipids/pharmacology , Pectins/pharmacology , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/toxicity , Animals , Cell Survival/drug effects , Cell Survival/physiology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Glycolipids/chemistry , Pectins/chemistry , Shiga Toxin/classification , Vero Cells
2.
Toxins (Basel) ; 9(5)2017 04 29.
Article in English | MEDLINE | ID: mdl-28468281

ABSTRACT

Several immunoglobulin-binding proteins of Escherichia coli (Eib) have been isolated from both non-pathogenic and pathogenic E. coli strains. Shiga toxin (Stx)-producing E. coli (STEC) contain eibG either as a single gene or in combination with eibC, while other E. coli strains harbour single or multiple eib genes. The Eib proteins bind human immunoglobulins in a non-immune manner and contribute to bacterial chain-like adherence to human epithelial cells. In this study, the EibG expression in several STEC strains was analysed under different environmental conditions. STEC produced high levels of EibG in complex media and lower levels in low-grade and minimal media under static growth conditions. This characteristic was independent on the Eib subtypes. Microscopically, EibG-expressing STEC exhibited chain formation and aggregation in all employed media, while aggregates were only visible after growth in complex medium. Once expressed, EibG proteins demonstrate high stability during prolonged incubation. Our findings indicate that the regulation of the expression of Eib proteins is highly complex, although the protein levels vary among STEC strains. However, positive upregulation conditions generally result in distinct phenotypes of the isolates.


Subject(s)
Escherichia coli Proteins/metabolism , Lymphokines/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Phenotype , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...