Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 17: 568-580, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32258219

ABSTRACT

Phenylketonuria is an inborn error of metabolism caused by loss of function of the liver-expressed enzyme phenylalanine hydroxylase and is characterized by elevated systemic phenylalanine levels that are neurotoxic. Current therapies do not address the underlying genetic disease or restore the natural metabolic pathway resulting in the conversion of phenylalanine to tyrosine. A family of hepatotropic clade F adeno-associated viruses (AAVs) was isolated from human CD34+ hematopoietic stem cells (HSCs) and one (AAVHSC15) was utilized to deliver a vector to correct the phenylketonuria phenotype in Pahenu2 mice. The AAVHSC15 vector containing a codon-optimized form of the human phenylalanine hydroxylase cDNA was administered as a single intravenous dose to Pahenu2 mice maintained on a phenylalanine-containing normal chow diet. Optimization of the transgene resulted in a vector that produced a sustained reduction in serum phenylalanine and normalized tyrosine levels for the lifespan of Pahenu2 mice. Brain levels of phenylalanine and the downstream serotonin metabolite 5-hydroxyindoleacetic acid were restored. In addition, the coat color of treated mice darkened following treatment, indicating restoration of the phenylalanine metabolic pathway. Taken together, these data support the potential of an AAVHSC15-based gene therapy as an investigational therapeutic for phenylketonuria patients.

2.
PLoS One ; 14(11): e0225582, 2019.
Article in English | MEDLINE | ID: mdl-31770409

ABSTRACT

The biodistribution of AAVHSC7, AAVHSC15, and AAVHSC17 following systemic delivery was assessed in cynomolgus macaques (Macaca fascicularis). Animals received a single intravenous (IV) injection of a self-complementary AAVHSC-enhanced green fluorescent protein (eGFP) vector and tissues were harvested at two weeks post-dose for anti-eGFP immunohistochemistry and vector genome analyses. IV delivery of AAVHSC vectors produced widespread distribution of eGFP staining in glial cells throughout the central nervous system, with the highest levels seen in the pons and lateral geniculate nuclei (LGN). eGFP-positive neurons were also observed throughout the central and peripheral nervous systems for all three AAVHSC vectors including brain, spinal cord, and dorsal root ganglia (DRG) with staining evident in neuronal cell bodies, axons and dendritic arborizations. Co-labeling of sections from brain, spinal cord, and DRG with anti-eGFP antibodies and cell-specific markers confirmed eGFP-staining in neurons and glia, including protoplasmic and fibrous astrocytes and oligodendrocytes. For all capsids tested, 50 to 70% of glial cells (S100-ß+) and on average 8% of neurons (NeuroTrace+) in the LGN were positive for eGFP expression. In the DRG, 45 to 62% of neurons and 8 to 12% of satellite cells were eGFP-positive for the capsids tested. eGFP staining was also observed in peripheral tissues with abundant staining in hepatocytes, skeletal- and cardio-myocytes and in acinar cells of the pancreas. Biodistribution of AAVHSC vector genomes in the central and peripheral organs generally correlated with eGFP staining and were highest in the liver for all AAVHSC vectors tested. These data demonstrate that AAVHSCs have broad tissue tropism and cross the blood-nerve and blood-brain-barriers following systemic delivery in nonhuman primates, making them suitable gene editing or gene transfer vectors for therapeutic application in human genetic diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System/metabolism , Dependovirus/genetics , Genetic Vectors/metabolism , Administration, Intravenous , Animals , Ganglia, Spinal/metabolism , Genetic Therapy/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Macaca , Neuroglia/metabolism , Neurons/metabolism , Tissue Distribution
3.
Proc Natl Acad Sci U S A ; 115(31): E7379-E7388, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30018062

ABSTRACT

The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.


Subject(s)
Dependovirus/genetics , Gene Editing , Hematopoietic Stem Cells/metabolism , Homologous Recombination , BRCA2 Protein/physiology , Genetic Vectors , Humans , Interleukin Receptor Common gamma Subunit/genetics , K562 Cells
4.
Hum Gene Ther Clin Dev ; 29(1): 60-67, 2018 03.
Article in English | MEDLINE | ID: mdl-29624457

ABSTRACT

To assess the therapeutic utility of AAVHSC15 and AAVHSC17, two recently described Clade F adeno-associated viruses (AAVs), the seroprevalence of neutralizing antibodies (NAbs) to these AAVs was assessed in a representative human population and compared to that of AAV9. NAb levels were measured in 100 unique human sera of different races (34, Black, 33 Caucasian, and 33 Hispanic) and sex (49% female, 51% male) collected within the United States. Fifty-six sera were tested in Huh7 cells and 44 sera were tested in 2V6.11 cells with vectors packaged with either a CMV-promoter upstream of LacZ or a CBA-promoter upstream of Firefly Luciferase, respectively. For AAVHSC15, AAVHSC17, and AAV9, 24/100 (24%), 21/100 (21%), and 17/100 (17%), respectively, of all sera tested were seropositive for NAbs using 50% inhibition of cellular transduction at a 1/16 dilution of serum as cutoff for seropositivity. Only 6% of positive sera had titers of 1/150 to 1/340, indicating that the majority of positive sera were of low titer. Significant cross-reactivity of NAbs across all three AAV serotypes was observed. These data show that approximately 80% of humans evaluated were seronegative for pre-existing NAbs to the AAV serotypes tested, suggesting that the vast majority of human subjects would be amenable to therapeutic intervention with Clade F AAVs.


Subject(s)
Antibodies, Neutralizing/immunology , Dependovirus/immunology , Racial Groups , Serogroup , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Cell Line , Cell Line, Tumor , Dependovirus/genetics , Genetic Vectors/immunology , Humans , Seroepidemiologic Studies , United States
5.
Article in English | MEDLINE | ID: mdl-26015945

ABSTRACT

Production of large quantities of viral vectors is crucial for the success of gene therapy in the clinic. There is a need for higher titers of herpes simplex virus-1 (HSV-1) vectors both for therapeutic use as well as in the manufacturing of clinical grade adeno-associated virus (AAV) vectors. HSV-1 yield increased when primary human fibroblasts were treated with anti-inflammatory drugs like dexamethasone or valproic acid. In our search for compounds that would increase HSV-1 yield, we investigated another anti-inflammatory compound, aurintricarboxylic acid (ATA). Although ATA has been previously shown to have antiviral effects, we find that low (micromolar) concentrations of ATA increased HSV-1 vector production yields. Our results showing the use of ATA to increase HSV-1 titers have important implications for the production of certain HSV-1 vectors as well as recombinant AAV vectors.

6.
Mol Ther ; 19(2): 260-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20978476

ABSTRACT

Inhibition of vascular endothelial growth factor (VEGF) for the management of the pathological ocular neovascularization associated with diseases such as neovascular age-related macular degeneration is a proven paradigm; however, monthly intravitreal injections are required for optimal treatment. We have previously shown that a novel, secreted anti-VEGF molecule sFLT01 delivered by intravitreal injection of an AAV2 vector (AAV2-sFLT01) gives persistent expression and is efficacious in a murine model of retinal neovascularization. In the present study, we investigate transduction and efficacy of an intravitreally administered AAV2-sFLT01 in a nonhuman primate (NHP) model of choroidal neovascularization (CNV). A dose-dependent and persistent expression of sFLT01 was observed by collecting samples of aqueous humor at different time points over 5 months. The location of transduction as elucidated by in situ hybridization was in the transitional epithelial cells of the pars plana and in retinal ganglion cells. AAV2-sFLT01 was able to effectively inhibit laser-induced CNV in a dose-dependent manner as determined by comparing the number of leaking CNV lesions in the treated versus control eyes using fluorescein angiography. Our data suggest that intravitreal delivery of AAV2-sFLT01 may be an effective long-term treatment for diseases caused by ocular neovascularization.


Subject(s)
Choroidal Neovascularization/therapy , Dependovirus/genetics , Genetic Vectors/genetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/physiology , Animals , Enzyme-Linked Immunosorbent Assay , In Situ Hybridization , Intravitreal Injections , Macaca fascicularis , Mice , Mice, Inbred C57BL , Vascular Endothelial Growth Factor Receptor-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...