Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 9(12): 1686-1695, 2019 12.
Article in English | MEDLINE | ID: mdl-31575540

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide with no clinically confirmed oncogenic driver. Although preclinical studies implicate the FGF19 receptor FGFR4 in hepatocarcinogenesis, the dependence of human cancer on FGFR4 has not been demonstrated. Fisogatinib (BLU-554) is a potent and selective inhibitor of FGFR4 and demonstrates clinical benefit and tumor regression in patients with HCC with aberrant FGF19 expression. Mutations were identified in the gatekeeper and hinge-1 residues in the kinase domain of FGFR4 upon disease progression in 2 patients treated with fisogatinib, which were confirmed to mediate resistance in vitro and in vivo. A gatekeeper-agnostic, pan-FGFR inhibitor decreased HCC xenograft growth in the presence of these mutations, demonstrating continued FGF19-FGFR4 pathway dependence. These results validate FGFR4 as an oncogenic driver and warrant further therapeutic targeting of this kinase in the clinic. SIGNIFICANCE: Our study is the first to demonstrate on-target FGFR4 kinase domain mutations as a mechanism of acquired clinical resistance to targeted therapy. This further establishes FGF19-FGFR4 pathway activation as an oncogenic driver. These findings support further investigation of fisogatinib in HCC and inform the profile of potential next-generation inhibitors.See related commentary by Subbiah and Pal, p. 1646.This article is highlighted in the In This Issue feature, p. 1631.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Drug Resistance, Neoplasm , Liver Neoplasms/diagnostic imaging , Pyrans/pharmacology , Quinazolines/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/genetics , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Female , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Middle Aged , Models, Molecular , Mutation , Neoplasm Transplantation , Protein Domains , Receptor, Fibroblast Growth Factor, Type 4/chemistry , Receptor, Fibroblast Growth Factor, Type 4/metabolism
2.
Cancer Discov ; 5(4): 424-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25776529

ABSTRACT

UNLABELLED: Aberrant signaling through the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR 4) signaling complex has been shown to cause hepatocellular carcinoma (HCC) in mice and has been implicated to play a similar role in humans. We have developed BLU9931, a potent and irreversible small-molecule inhibitor of FGFR4, as a targeted therapy to treat patients with HCC whose tumors have an activated FGFR4 signaling pathway. BLU9931 is exquisitely selective for FGFR4 versus other FGFR family members and all other kinases. BLU9931 shows remarkable antitumor activity in mice bearing an HCC tumor xenograft that overexpresses FGF19 due to amplification as well as a liver tumor xenograft that overexpresses FGF19 mRNA but lacks FGF19 amplification. Approximately one third of patients with HCC whose tumors express FGF19 together with FGFR4 and its coreceptor klotho ß (KLB) could potentially respond to treatment with an FGFR4 inhibitor. These findings are the first demonstration of a therapeutic strategy that targets a subset of patients with HCC. SIGNIFICANCE: This article documents the discovery of BLU9931, a novel irreversible kinase inhibitor that specifically targets FGFR4 while sparing all other FGFR paralogs and demonstrates exquisite kinome selectivity. BLU9931 is efficacious in tumors with an intact FGFR4 signaling pathway that includes FGF19, FGFR4, and KLB. BLU9931 is the first FGFR4-selective molecule for the treatment of patients with HCC with aberrant FGFR4 signaling.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Signal Transduction/drug effects , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Kinase Inhibitors/chemistry , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/chemistry , Sequence Alignment , Xenograft Model Antitumor Assays
3.
J Cell Sci ; 125(Pt 22): 5535-45, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22976304

ABSTRACT

Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement. Binding of phosphatidylinositol [3,4,5]-triphosphate to the Skap2 pleckstrin-homology (PH) domain, which relieves its conformational auto-inhibition, is critical for this integrin-driven cytoskeletal response. Skap2 enables integrin-induced tyrosyl phosphorylation of Src-family kinases (SFKs), Adap, and Sirpα, establishing their roles as signaling partners in this process. Furthermore, macrophages lacking functional Sirpα unexpectedly have impaired local integrin-induced responses identical to those of Skap2(-/-) macrophages, and Skap2 requires Sirpα for its recruitment to engaged integrins and for coordinating downstream actin rearrangement. By revealing the positive-regulatory role of Sirpα in a Skap2-mediated mechanism connecting integrin engagement with cytoskeletal rearrangement, these data demonstrate that Sirpα is not exclusively immunoinhibitory, and illuminate previously unexplained observations implicating Skap2 and Sirpα in mouse models of inflammatory disease.


Subject(s)
Cytoskeleton/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Receptors, Immunologic/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cattle , Chemotaxis/drug effects , Cytoskeleton/drug effects , HEK293 Cells , Humans , Integrins/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Mice , Models, Biological , Polymerization/drug effects , Protein Structure, Tertiary , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...