Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766048

ABSTRACT

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

2.
medRxiv ; 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33758873

ABSTRACT

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naive donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.

3.
Science ; 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766944

ABSTRACT

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.

4.
J Pharmacol Exp Ther ; 369(1): 26-36, 2019 04.
Article in English | MEDLINE | ID: mdl-30643015

ABSTRACT

Migraine is a debilitating disease that affects almost 15% of the population worldwide and is the first cause of disability in people under 50 years of age, yet its etiology and pathophysiology remain incompletely understood. Recently, small molecules and therapeutic antibodies that block the calcitonin gene-related peptide (CGRP) signaling pathway have reduced migraine occurrence and aborted acute attacks of migraine in clinical trials and provided prevention in patients with episodic and chronic migraine. Heterogeneity is present within each diagnosis and patient's response to treatment, suggesting migraine as a final common pathway potentially activated by multiple mechanisms, e.g., not all migraine attacks respond to or are prevented by anti-CGRP pharmacological interventions. Consequently, other unique mechanisms central to migraine pathogenesis may present new targets for drug development. Pituitary adenylate cyclase-activating peptide (PACAP) is an attractive novel target for treatment of migraines. We generated a specific, high-affinity, neutralizing monoclonal antibody (ALD1910) with reactivity to both PACAP38 and PACAP27. In vitro, ALD1910 effectively antagonizes PACAP38 signaling through the pituitary adenylate cyclase-activating peptide type I receptor, vasoactive intestinal peptide receptor 1, and vasoactive intestinal peptide receptor 2. ALD1910 recognizes a nonlinear epitope within PACAP and blocks its binding to the cell surface. To test ALD1910 antagonistic properties directed against endogenous PACAP, we developed an umbellulone-induced rat model of neurogenic vasodilation and parasympathetic lacrimation. In vivo, this model demonstrates that the antagonistic activity of ALD1910 is dose-dependent, retaining efficacy at doses as low as 0.3 mg/kg. These results indicate that ALD1910 represents a potential therapeutic antibody to address PACAP-mediated migraine.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Pituitary Adenylate Cyclase-Activating Polypeptide/immunology , Animals , Antibody Specificity , Dose-Response Relationship, Immunologic , Epitopes/immunology , Humans , Kinetics , Male , Migraine Disorders/immunology , Migraine Disorders/prevention & control , PC12 Cells , Rats , Rats, Sprague-Dawley
5.
Endocrinology ; 158(1): 1-8, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27906551

ABSTRACT

Adrenocorticotropic hormone (ACTH) is the primary regulator of adrenal glucocorticoid production. Elevated levels of ACTH play a critical role in disease progression in several indications, including congenital adrenal hyperplasia and Cushing disease. We have generated a specific, high-affinity, neutralizing monoclonal antibody (ALD1613) to ACTH. In vitro, ALD1613 neutralizes ACTH-induced signaling via all 5 melanocortin receptors and inhibited ACTH-induced cyclic adenosine monophosphate accumulation in a mouse adrenal cell line (Y1). ALD1613 administration to wild-type rats significantly reduced plasma corticosterone levels in a dose-dependent manner. In rodent models with either chronic infusion of ACTH or acute restraint stress-induced ACTH, corticosterone levels were significantly reduced by ALD1613. Administration of ALD1613 to nonhuman primates on days 1 and 7 stably reduced plasma cortisol levels >50% for 57 days. ALD1613 demonstrates the potential of a monoclonal antibody to be an effective therapeutic for conditions with elevated ACTH levels.


Subject(s)
Adrenocorticotropic Hormone/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Hydrocortisone/blood , Adrenal Hyperplasia, Congenital/drug therapy , Adrenocorticotropic Hormone/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , CHO Cells , Corticosterone/blood , Cricetinae , Cricetulus , Drug Evaluation, Preclinical , Humans , Macaca fascicularis , Male , Pituitary ACTH Hypersecretion/drug therapy , Rabbits , Rats , Rats, Inbred Lew , Receptor, Melanocortin, Type 2/metabolism , Stress, Psychological/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...