Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 472(1): 33-9, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26898799

ABSTRACT

Due to a lack of effective screening or prevention protocol for epithelial ovarian cancer (EOC), there is a critical unmet need to develop therapeutic interventions for EOC treatment. EOC metastasis is unique. Initial dissemination is not primarily hematogenous, yet is facilitated through shedding of primary tumor cells into the peritoneal fluid and accumulating ascites. Increasingly, isolated patient spheroids point to a clinical role for spheroids in EOC metastasis. EOC spheroids are highly invasive structures that disseminate upon peritoneal mesothelium, and visceral tissues including liver and omentum. Selection for this subset of chemoresistant EOC cells could influence disease progression and/or recurrence. Thus, targeting spheroid integrity/structure may improve the chemotherapeutic responsiveness of EOC. We discovered a critical role for mammalian Diaphanous (mDia)-related formin-2 in maintaining EOC spheroid structure. Both mDia2 and the related mDia1 regulate F-actin networks critical to maintain cell-cell contacts and the integrity of multi-cellular epithelial sheets. We investigated if mDia2 functional inhibition via a small molecule inhibitor SMIFH2 combined with chemotherapeutics, such as taxol and cisplatin, inhibits the viability of EOC monolayers and clinically relevant spheroids. SMIFH2-mediated mDia formin inhibition significantly reduced both ES2 and Skov3 EOC monolayer viability while spheroid viability was minimally impacted only at the highest concentrations. Combining either cisplatin or taxol with SMIFH2 did not significantly enhance the effects of either drug alone in ES2 monolayers, while Skov3 monolayers treated with taxol or cisplatin and SMIFH2 showed significant additive inhibition of viability. ES2 spheroids were highly responsive with clear additive anti-viability effects with dual taxol or cisplatin when combined with SMIFH2 treatments. While combined taxol with SMIFH2 in spheroids showed an additive effect relative to single treatments, Skov3 spheroids showed no additive effects from combined cisplatin and SMIFH2 treatments. Our data indicate that mDia formin inhibition combined with taxol to drive enhanced and/or additive anti-viability effects targeting 3D EOC structures, including ES2 and Skov3 spheroids. Combined mDia formin inhibition with cisplatin may be most effective in EOC spheroids where cisplatin sensitivity is retained at moderate levels, such as ES2 cells.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carrier Proteins/antagonists & inhibitors , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Thiones/administration & dosage , Uracil/analogs & derivatives , Actins/metabolism , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/administration & dosage , Drug Resistance, Neoplasm , Drug Synergism , Female , Formins , Humans , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Paclitaxel/administration & dosage , Spheroids, Cellular , Uracil/administration & dosage
2.
Mol Biol Cell ; 26(21): 3704-18, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26354425

ABSTRACT

The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component-tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/agonists , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Small Molecule Libraries/pharmacology , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Formins , Glioblastoma/metabolism , Glioblastoma/pathology , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Humans , Neoplasm Invasiveness , Rats , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...