Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 82019 07 01.
Article in English | MEDLINE | ID: mdl-31259686

ABSTRACT

Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.


Subject(s)
Adaptor Protein Complex 2/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Olfactory Receptor Neurons/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Cilia/genetics , Cilia/metabolism , Lipids/genetics , Morphogenesis/genetics , Olfactory Receptor Neurons/physiology , Protein Transport/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...