Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(11): 16375-16387, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315336

ABSTRACT

Intensive sulphur fertilisation has been reported to improve the nutrient balance and growth of Cd-exposed plants, but the reasons of this phenomenon and the role of sulphur compounds in the resistance to cadmium are unclear. We investigated sulphur supplementation-induced changes in the surface properties of roots and the level of thiol peptides (PCs) in Cd-stressed Triticum aestivum L. (monocots clade) and Lactuca sativa L. (dicots clade) grown in nutrient solution. The combination of three sulphur (2 mM S-basic level, 6 or 9 mM S-elevated levels) and four cadmium (0, 0.0002, 0.02 or 0.04 mM Cd) concentrations was used. The physicochemical parameters of the roots were determined based on the apparent surface area (Sr), total variable surface charge (Q), cation exchange capacity (CEC) and surface charge density (SCD). In Cd-exposed plants supplied with sulphur, a different character and trend in the physicochemical changes (adsorption and ion exchange) of roots were noted. At the increased sulphur levels, as a rule, the Sr, CEC, Q and SCD values clearly increased in the lettuce but decreased in the wheat in the entire range of the Cd concentrations, except the enhanced Sr of wheat supplied with 6 mM S together with elevated (0.0002 mM) and unchanged (0.02, 0.04 mM Cd) value of this parameter at 9 mM S. This indicates a clade-specific and/or species-specific plant reaction. The 6 mM S appears to be more effective than 9 mM S in alleviation of the cadmium's toxic effects on roots. It was found that at 0.02 and 0.04 mM Cd, the use of 6 mM S limits the Cd accumulation in the roots of both species in comparison with the basic S fertilisation. Moreover, PC accumulation was much more efficient in wheat than in lettuce, and intensive sulphur nutrition generally induced biosynthesis of these chelating compounds. Physicochemical parameters together with quantitative and qualitative assessment of thiol peptides can be important indicators of the efficiency of root system functioning under cadmium stress. The differences between the species and the multidirectional character of the changes are a result of the involvement of a number of multi-level mechanisms engaged in the defence against metal toxicity.


Subject(s)
Phytochelatins , Soil Pollutants , Cadmium/toxicity , Lactuca , Triticum , Sulfur/pharmacology , Sulfhydryl Compounds , Dietary Supplements , Plant Roots , Soil Pollutants/pharmacology
2.
Plants (Basel) ; 11(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161224

ABSTRACT

Three aphid species, Eriosoma ulmi (L.), Colopha compressa (Koch) and Tetraneura ulmi (L.) induce distinct gall morphotypes on Ulmus glabra Huds.; opened and closed galls. Because the trophic relationship of aphids and their galls shows that throughout the gall formation aphids can elicit multiple physiological regulations, we evaluated the changes of hydrogen peroxide content (H2O2), cytoplasmic membrane condition, expressed as electrolyte leakage (EL) and concentration of thiobarbituric acid reactive substances (TBARS), as well as, the activity of catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) in gall tissues, as well as, in damaged and undamaged parts of galled leaves. All aphid species increased EL from gall tissues and significantly upregulated APX activity in galls and galled leaves. Alterations in H2O2 and TBARS concentrations, as well as GPX and CAT activities, were aphid- and tissue-dependent. The development of pseudo- and closed galls on elm leaves did not have a clear effect on the direction and intensity of the host plant's physiological response. The different modes of changes in H2O2, TBARS, CAT and GPX were found in true galls of C. compressa and T. ulmi. Generally, physiological alterations in new plant tissues were quite different compared to other tissues and could be considered beneficial to galling aphids.

3.
Plants (Basel) ; 10(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808606

ABSTRACT

To obtain healthy and good quality plants from in vitro cultivation, it is necessary to produce plantlets with well-developed rooting systems because they must undergo acclimatization, a final and a very difficult stage of micropropagation. In the present research, the effect of auxins NAA, IAA and IBA in concentrations of 0.5; 1; 2.5 and 5 mg·dm-3 on the Paphiopediluminsigne in vitro rooting was studied, and it was noted that 1 mg·dm-3 of IAA or IBA enabled the obtaining of a lot of rooted and good quality plantlets. The subsequent influence of the two most advantageous auxins on the acclimatization of plantlets in different substrates (sphagnum moss, sphagnum moss + substrate for orchids, substrate for orchids, substrate for orchids + acid peat) was tested, in the means of morphological features of plants and their physiological parameters, i.e., chlorophyll fluorescence (FV, Fm, Fv/Fm), stress enzyme activity (catalase, ascorbate peroxidase), and water balance. Considering all the tested features, it might be stated that the best results were obtained when explants were rooted in vitro in the presence of 1 mg·dm-3 of IAA and then planted ex vitro in substrate for orchids.

4.
Food Chem ; 342: 128358, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33092914

ABSTRACT

An increase in the content of secondary metabolites in herbal plants is desirable due to their therapeutic and nutraceutical properties. Therefore, the effects of foliar spray of 100 mg/L or 500 mg/L of chitosan lactate (ChL) on the accumulation of selected phenolics and physiological parameters of basil and lemon balm were investigated. In basil, the concentration of rosmarinic acid (RA) increased after application of 100 mg/L of ChL. In turn, in lemon balm both ChL concentrations increased the accumulation of RA and anthocyanins, while the level of total phenolic compounds (TPC) was elevated only at the dose of 100 mg/L of ChL. Elicitation of basil with 500 mg/L of ChL increased the shoot biomass. Therefore, such an elicitor as ChL can enhance the accumulation of valuable phytochemicals in Lamiaceae species. This simple and non-laborious method can be used for elicitation of herbal plants in production of functional food.


Subject(s)
Lactates/pharmacology , Melissa/drug effects , Melissa/metabolism , Ocimum basilicum/drug effects , Ocimum basilicum/metabolism , Phytochemicals/metabolism , Dose-Response Relationship, Drug
5.
Plant Physiol Biochem ; 127: 446-456, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29689508

ABSTRACT

We examined the possibility to enhance the growth and the physiological tolerance of lamb's lettuce (Valerianella locusta L.) grown under heat stress (HS) by biofortification with selenium (Se). The plants were grown at optimal (22/19 °C; day/night) or high (35/22 °C; day/night) temperature and Se was applied via foliar or soil treatment. The HS reduced plant biomass and photosynthetic pigment concentration and impaired some parameters of chlorophyll a fluorescence. The lamb's lettuce grown under HS accumulated large amounts of H2O2 in the leaves, especially in younger ones. The Se fertilization (both foliar and soil) at HS was beneficial to plant growth, whilst the concentration of photosynthetic pigments and the analysed parameters of chlorophyll a fluorescence were unaffected by the Se supply. The application of Se enhanced the thermo-tolerance of plants through cooperative action of antioxidant enzymes, such as guaiacol peroxidase (GPOX; EC 1.11.1.7) and catalase (CAT; EC 1.11.1.6), and reduced glutathione (GSH) among low-molecular-weight non-enzymatic antioxidants, in removal of excess of H2O2. Although under HS the content of different phenolic compounds in the leaves was higher than under normal temperature (NT), the application of Se did not affect their concentration at stress conditions. On the other hand, at NT the Se-biofortified plants accumulated significantly more phenolic compounds with health-promoting properties than Se-untreated plants. Therefore, biofortification of lamb's lettuce with Se can be beneficial in terms of plants yield and their nutritional value under both NT and HS.


Subject(s)
Fertilizers , Food, Fortified , Heat-Shock Response/drug effects , Hot Temperature , Lactuca/growth & development , Selenium/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/biosynthesis
6.
Environ Entomol ; 47(4): 840-847, 2018 08 11.
Article in English | MEDLINE | ID: mdl-29672728

ABSTRACT

Gall formation is induced by an insect, which changes normal plant development and results in the formation of a new organ, following distinct stages of metabolic and developmental alterations. Research on mechanisms of recognition and responses to biotic stress may help to understand the interactions between galling aphids and their host plants. In this study, Tetraneura ulmi L. (Hemiptera: Eriosomatinae) galls and Ulmus pumila L. (Rosales: Ulmaceae) leaves were used as a model. Concentrations of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances, electrolyte leakage, as well as the activity of ascorbate peroxidase, guaiacol peroxidase, and catalase (CAT) were determined in galls and two parts of galled leaves (with and without visible damage). Biochemical analyses were performed at three stages of gall development: initial, fully developed, and mature galls. A slight increment in H2O2 content with a strong enhancement of ascorbate peroxidase and CAT activities were observed in galls and galled leaves in the first stage. In subsequent stages of gall development, a progressing increase in H2O2 production and cell membrane damage was associated with declining antioxidant enzyme activities, especially in gall tissues. The stages of gall development are likely to be part of cell death triggered by aphid feeding. It seems that the gall is the result of a biochemical struggle between the host plant and the gall inducer.


Subject(s)
Antioxidants/metabolism , Hemiptera/physiology , Herbivory , Oxidative Stress , Ulmus/physiology , Animals , Hemiptera/growth & development , Nymph/growth & development , Nymph/physiology , Plant Leaves/enzymology , Plant Leaves/physiology , Plant Tumors/etiology , Ulmus/enzymology
7.
Environ Entomol ; 47(3): 669-675, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29659765

ABSTRACT

Gall-inducing Cynipidae (Hymenoptera) manipulate the leaves of their host plants and induce local resistance, resulting in a diversity of physiological changes. In this study, three gall morphotypes caused by the asexual generation of Cynips quercusfolii L., Neuroterus numismalis (Fourc.) and Neuroterus quercusbaccarum L. (Hymenoptera: Cynipidae) on pedunculate oaks (Quercus robur L. (Fagales: Fagaceae)), were used as a model to examine physiological alterations in galls and foliar tissues, compared to non-galled tissues. Our goal was to investigate whether plant physiological response to insect feeding on the same host plant varies depending on gall-wasp species. In particular, the cytoplasmic membrane condition, hydrogen peroxide (H2O2) concentration and changes in antioxidative enzyme activities, including guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) were examined in this study. All cynipid species increased H2O2 levels in the leaves with galls, while the level of H2O2 in galls depended on the species. The presence of galls of all species on oak leaves caused an increase of electrolyte leakage and lipid peroxidation level. A significant induction of GPX activity was observed in the leaves with galls of all species, indicating stress induction. Conversely, the decrease in APX activity in both leaves with galls and galled tissues exposed to feeding of all cynipid species.


Subject(s)
Antioxidants/metabolism , Food Chain , Hydrogen Peroxide/metabolism , Plant Tumors/etiology , Quercus/physiology , Wasps/physiology , Animals , Cell Membrane/physiology , Poland , Quercus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...