Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(19): 7448-7458, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35506716

ABSTRACT

Acyclic diamino carbenes (ADCs) are interesting alternatives to their more widely studied N-heterocyclic carbene counterparts, particularly due to their greater synthetic accessibility and properties such as increased sigma donation and structural flexibility. ADC gold complexes are typically obtained through the reaction of equimolar amounts of primary/secondary amines on gold-coordinated isocyanide ligands. As such, the reaction of diamine nucleophiles to isocyanide gold complexes was expected to lead to bis-ADC gold compounds with potential applications in catalysis or as novel precursors for gold nanomaterials. However, the reaction of primary diamines with two equivalents of isocyanide gold chlorides resulted in only one of the amine groups reacting with the isocyanide carbon. The resulting ADC gold complexes bearing free amines dimerized via coordination of the amine to the partner gold atom, resulting in cyclic, dimeric gold complexes. In contrast, when secondary diamines were used, both amines reacted with an isocyanide carbon, leading to the expected bis-ADC gold complexes. Density functional theory calculations were performed to elucidate the differences in the reactivities between primary and secondary diamines. It was found that the primary amines were associated with higher reaction barriers than the secondary amines and hence slower reaction rates, with the formation of the second carbenes in the bis-ADC compounds being inhibitingly slow. It was also found that diamines have a unique reactivity due to the second amine serving as an internal proton shuttle.

2.
Angew Chem Int Ed Engl ; 60(42): 22700-22705, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34520085

ABSTRACT

Self-assembly processes guide disordered molecules or particles into long-range organized structures due to specific supramolecular interactions among the building entities. Herein, we report a unique evaporation-induced self-assembly (EISA) strategy for four different silica nanoparticle systems obtained through peptide functionalization of the particle surface. First, covalent peptide-silica coupling was investigated in detail, starting with the grafting of a single amino acid (L-serine) and expanded to specific small peptides (up to four amino acids) and transferred to different particle types (MCM-48-type MSNs, solid nanoparticles, and newly developed virus-like nanoparticles). These materials were investigated regarding their ability to undergo EISA, which was shown to be independent of particle type and amount of peptide anchored to their surface. This EISA-based approach provides new possibilities for the design of future advanced drug delivery systems, engineered hierarchical sorbents, and nanocatalyst assemblies.

3.
Anal Biochem ; 611: 114003, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33159847

ABSTRACT

Most of potential diagnostic and therapeutic nanoparticles fail to reach clinical trials because assessment of their 'drug-like' properties is often overlooked during the discovery stage. This compromises the results of cell culture and animal experiments, making them insufficient to evaluate the lead candidates for testing on patients. In this study, we demonstrate the potential of high-resolution inductively coupled plasma mass spectrometry (ICP-MS) as a nanoparticle qualification tool. Using novel gold nanoparticles stabilized by N-heterocyclic carbenes as test nanoparticles, it was shown that important prerequisites for biomedical applications, such as resistance to the action of human serum milieu or reactivity toward serum biomolecules, can be reliably assessed by recording the signals of gold or sulfur isotopes. Implemented during the screening stage, the method would provide benefits in shortening timelines and reducing cost for selection and initial testing of medicinal nanoparticle candidates.


Subject(s)
Gold/analysis , Mass Spectrometry , Metal Nanoparticles/analysis , Particle Size
4.
Chemistry ; 26(68): 15859-15862, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32996636

ABSTRACT

N-heterocyclic carbenes (NHCs) have received significant attention as gold nanoparticle stabilizers due to their strong binding affinity towards gold. However, their tunability is limited by the difficulty in obtaining nonsymmetric NHCs. In this regard, N-acyclic carbenes (NACs) are attractive alternatives due to their high synthetic versatility, allowing easy tuning of their steric and electronic properties towards specific applications. This work reports the first series of stable and monodisperse NAC-functionalized gold nanoparticles. These particles with sizes ranging 3.8 to 11.6 nm were characterized using NMR, UV/Vis and TEM. The nanoparticles display good stability at elevated temperatures and for extended periods both dried or dispersed in a medium, as well as in the presence of exogenous thiols. Importantly, these NAC-stabilized gold nanoparticles offer a promising and versatile alternative to NHC-stabilized gold nanoparticles.

5.
Dalton Trans ; 49(24): 8075-8085, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32525152

ABSTRACT

Solvothermal reactions between a pyridine based amide functionalized dicarboxylic acid, 4,4'-{(pyridine-2,6-dicarbonyl)bis(azanediyl)}dibenzoic acid (H2L), and zinc(ii) nitrate in the absence and presence of a base produced the binuclear metallomacrocyclic compound [Zn2(L)2(H2O)4]·2(H2O)·6(DMF) (1) and the metallomacrocyclic based two dimensional MOF [Zn5(L)4(OH)2(H2O)4]n·8n(DMF)·4n(H2O) (2), respectively. Compound 1 bears two tetrahedral Zn(ii) centres, whereas the 2D framework 2 includes a penta-nuclear Zn(ii) cluster as a secondary building block unit, with two of the metal cations assuming a tetrahedral type geometry and the remaining three an octahedral type geometry. The topological analyses reveal that compound 1 has a 2-connected uninodal net and framework 2 has a 2, 8-connected binodal net. These compounds heterogeneously catalyse the tandem deacetalization-Knoevenagel condensation reactions carried out under conventional heating, microwave irradiation or ultrasonic irradiation. Comparative studies show that ultrasonic irradiation (final product yield of 99% after 2 h of reaction time) provides the most favourable method (e.g., microwave irradiation leads to a final product yield of 91% after 3 h of reaction time). Moreover, the catalysts can be reused at least for five consecutive cycles without losing activity significantly.

6.
Front Chem ; 7: 699, 2019.
Article in English | MEDLINE | ID: mdl-31709229

ABSTRACT

A pyridine-based amide functionalized tetracarboxylic acid, 5,5'-(pyridine-2, 6-dicarbonyl)bis(azanediyl)}diisophthalic acid (H4L), was synthesized and its coordination chemistry toward zinc(II) and cadmium(II) ions was studied. The reactions of H4L with Zn(NO3)2.6H2O and Cd(NO3)2.4H2O led to its full or partial deprotonation, respectively, and the formation of the 2D coordination polymers [Zn2(L)(H2O)4]n.4n(H2O) (1) and [Cd3(HL)2(DMF)4]n.4n(DMF) (2) (DMF = N,N'-dimethylformamide), respectively. They were characterized by elemental analysis, FT-IR, photoluminescence, thermogravimetry, and single-crystal and powder X-ray diffraction. In 1, the L4- ligand is planar with every carboxylate anion binding a Zn(II) cation and giving rise to a 2D grid with the metals with tetrahedral environments. In 2, the combination of bridging HL3- and dimethylformamide to form trinuclear Cd(II) clusters engenders secondary building block units and generates a layer-type 2D network with the metals with octahedral and pentagonal bipyramid coordination geometries. The topological analyses of 1 and 2 reveal 2,4-connected and 3,6-connected binodal nets, respectively. On account of the presence of Lewis acid (Zn or Cd centers) as well as basic (uncoordinated pyridine and amide groups) sites, 1 and (to a much lower extent) 2 effectively catalyze the one-pot cascade deacetalization-Knoevenagel condensation reactions under quite mild conditions. They act as heterogeneous catalysts, being easy to recover and recycle without losing activity.

7.
J Inorg Biochem ; 199: 110707, 2019 10.
Article in English | MEDLINE | ID: mdl-31369908

ABSTRACT

N-Heterocyclic carbene-stabilized metal nanoparticles have drawn much attention over the last decade due their strong carbon metal bond. Although several reports show increased stability of such N-heterocyclic carbene-stabilized metal nanoparticles, only limited examples of water-soluble N-heterocyclic carbene stabilized metal nanoparticles are known to date. However, water dispersibility and stability in biologically relevant solvents would be a prerequisite for any biological applications. Drawing from the natural amino acid chiral pool, L-histidine was utilized for preparing chiral NHC ligands in the synthesis of water soluble NHC-stabilized gold nanoparticles. For this purpose, N-acetyl-L-histidine ethyl ester was converted into its imidazolium salt either using methyl iodide or 2-iodopropane as alkylation agent. Subsequent reaction of the imidazolium salt with [Au(SMe2)Cl] yielded the corresponding organometallic gold chloride complex. Histidine-2-ylidene stabilized gold nanoparticles were first generated in organic solvents; the histidine derived capping ligand bore ethyl ester moieties which were saponified, affording water soluble pH-responsive NHC-stabilized gold nanoparticles. These gold nanoparticles show remarkable stability in aqueous solutions, with gold nanoparticle solutions remaining stable after months of storage.


Subject(s)
Gold/chemistry , Histidine/chemistry , Imidazoles/chemistry , Metal Nanoparticles/chemistry , Hydrogen-Ion Concentration
8.
Nanoscale ; 11(17): 8327-8333, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30984947

ABSTRACT

Although N-heterocyclic carbenes (NHCs) have been demonstrated as suitable ligands for the stabilisation of gold nanoparticles (AuNPs) through a variety of methods, the manner in which such AuNPs form is yet to be fully elucidated. We report a simple and fast one-step synthesis of uniform chiral (l/d)-histidin-2-ylidene stabilised gold nanoparticles using the organometallic Au(i) complex as a well defined starting material. The resulting nanoparticles have an average size of 2.35 ± 0.43 nm for the L analog whereas an average size of 2.25 ± 0.39 nm was found for the D analog. X-ray photoelectron spectroscopy analyses reveal the presence of Au(i) and Au(0) in all NHC stabilised AuNPs. In contrast, measured X-ray photoelectron spectra of dodecanethiol protected gold nanoparticles showed only the presence of a Au(0) species. This observation leads us to postulate that AuNPs synthesised from organometallic NHC-Au(i) complexes exhibit a monolayer of Au(i) surrounding a Au(0) core. This work highlights the importance of synthetic method choice for NHC-stabilized AuNPs, as this could determine Au oxidation states and resulting AuNP properties such as catalytic activities and stabilities.

9.
ChemistryOpen ; 7(11): 865-877, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30410851

ABSTRACT

The reactions of 3,3'-{(pyridine-2,6-dicarbonyl)bis(azanediyl)}dibenzoic acid (H2L) with zinc(II), cadmium(II), and samarium(III) nitrates were studied, and the obtained compounds, [Zn(1κO:2κO'-L)(H2O)2] n (1), [Cd(1κO 2:2κO 2-L)(H2O)2]2 ⋅6n H2O⋅ n C4H8O2 ⋅1.5n DMF (2), and [Sm(1κO:2κO'O'':3κO'''-L)(NO3)(H2O)(dmf)] n ⋅ n DMF (3), were characterized by elemental analysis, FTIR spectroscopy, thermogravimetric analysis, and X-ray single-crystal diffraction. Compounds 1 and 3 have 1D zigzag- and double-chain-type structures, respectively, whereas 2 features a dinuclear metallomacrocyclic complex. The ligand (L2-) orients in different conformations, that is, syn-syn for 1 and anti-anti for 2 and 3. Compound 1 is the first example in which the syn-syn conformation for this ligand has been observed. These compounds act as heterogeneous catalysts for the nitroaldol (Henry; in water medium) and Knoevenagel condensation reactions of different aldehydes, and the most effective is zinc coordination polymer 1. Recyclability, heterogeneity, and size-selectivity tests were performed, which showed that the catalyst was highly active over at least four recycling runs.

10.
Dalton Trans ; 46(26): 8649-8657, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28650028

ABSTRACT

Five isostructural lanthanide MOFs, [Ln(1κOO',2κO'',3κO''',4κO''''-µ4-L)(NO3)(DMF)2]n·n(DMF) {Ln = La3+ (1), Ce3+ (2), Nd3+ (3), Sm3+ (4) and Dy3+ (5); L = 5-[2-{2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene}hydrazinyl]isophthalate; DMF = N,N'-dimethyl formamide}, based on dicarboxyl-functionalized arylhydrazone of barbituric acid were synthesized under solvothermal conditions. They were characterized by elemental analysis, FT-IR spectroscopy, thermogravimetric and X-ray diffraction analyses. Crystal structure analysis revealed that these frameworks possess a similar type of two dimensional (2D) structure with a dinuclear {Ln2(COO-)2} unit acting as a secondary building block. Topological analysis shows that these frameworks display a 3,6-connected kgd; Shubnikov plane (3.6.3.6)/dual net. They exhibit excellent heterogeneous catalytic activities (compound 2 is the most active one) towards the cyanosilylation of aldehydes under solvent-free conditions. These catalysts can be recycled at least up to five cycles without a loss of activity. Compounds 1-5 exhibit luminescence properties in the solid state at room temperature.


Subject(s)
Aldehydes/chemistry , Barbiturates/chemistry , Hydrazones/chemistry , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Catalysis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Ketones/chemistry , Luminescent Measurements , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...