Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 216: 111316, 2021 03.
Article in English | MEDLINE | ID: mdl-33421883

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms.


Subject(s)
Copper/chemistry , Insect Proteins/chemistry , Isoptera/enzymology , Mixed Function Oxygenases/chemistry , Models, Molecular , Animals , Copper/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Isoptera/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism
2.
Microb Biotechnol ; 13(4): 1245-1253, 2020 07.
Article in English | MEDLINE | ID: mdl-32212325

ABSTRACT

Filamentous fungi are important cell factories for large-scale enzyme production. However, production levels are often low, and this limitation has stimulated research focusing on the manipulation of genes with predicted function in the protein secretory pathway. This pathway is the major route for the delivery of proteins to the cell exterior, and a positive relationship between the production of recombinant enzymes and the unfolded protein response (UPR) pathway has been observed. In this study, Aspergillus nidulans was exposed to UPR-inducing chemicals and differentially expressed genes were identified by RNA-seq. Twelve target genes were deleted in A. nidulans recombinant strains producing homologous and heterologous GH10 xylanases. The knockout of pbnA (glycosyltransferase), ydjA (Hsp40 co-chaperone), trxA (thioredoxin) and cypA (cyclophilin) improved the production of the homologous xylanase by 78, 171, 105 and 125% respectively. Interestingly, these deletions decreased the overall protein secretion, suggesting that the production of the homologous xylanase was specifically altered. However, the production of the heterologous xylanase and the secretion of total proteins were not altered by deleting the same genes. Considering the results, this approach demonstrated the possibility of rationally increase the production of a homologous enzyme, indicating that trxA, cypA, ydjA and pbnA are involved in protein production by A. nidulans.


Subject(s)
Aspergillus nidulans , Aspergillus nidulans/genetics , Secretory Pathway , Unfolded Protein Response
3.
Biotechnol Bioeng ; 113(12): 2577-2586, 2016 12.
Article in English | MEDLINE | ID: mdl-27316782

ABSTRACT

Fungal GH12 enzymes are classified as xyloglucanases when they specifically target xyloglucans, or promiscuous endoglucanases when they exhibit catalytic activity against xyloglucan and ß-glucan chains. Several structural and functional studies involving GH12 enzymes tried to explain the main patterns of xyloglucan activity, but what really determines xyloglucanase specificity remains elusive. Here, three fungal GH12 enzymes from Aspergillus clavatus (AclaXegA), A. zonatus (AspzoGH12), and A. terreus (AtEglD) were studied to unveil the molecular basis for substrate specificity. Using functional assays, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that three main regions are responsible for substrate selectivity: (i) the YSG group in loop 1; (ii) the SST group in loop 2; and (iii) loop A3-B3 and neighboring residues. Functional assays and sequence alignment showed that while AclaXegA is specific to xyloglucan, AtEglD cleaves ß-glucan, and xyloglucan. However, AspzoGH12 was also shown to be promiscuous contrarily to a sequence alignment-based prediction. We find that residues Y111 and R93 in AtEglD harbor the substrate in an adequate orientation for hydrolysis in the catalytic cleft entrance and that residues Y19 in AclaXegA and Y30 in AspzoGH12 partially compensate the absence of the YSG segment, typically found in promiscuous enzymes. The results point out the multiple structural factors underlying the substrate specificity of GH12 enzymes. Biotechnol. Bioeng. 2016;113: 2577-2586. © 2016 Wiley Periodicals, Inc.


Subject(s)
Fungal Proteins/chemistry , Glucans/chemistry , Glucans/ultrastructure , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/ultrastructure , Molecular Docking Simulation , Xylans/chemistry , Xylans/ultrastructure , Binding Sites , Enzyme Activation , Fungal Proteins/metabolism , Fungal Proteins/ultrastructure , Glucans/metabolism , Glycoside Hydrolases/metabolism , Models, Chemical , Protein Binding , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Xylans/metabolism
4.
Biotechnol Bioeng ; 111(8): 1494-505, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24578305

ABSTRACT

Enzymes that cleave the xyloglucan backbone at unbranched glucose residues have been identified in GH families 5, 7, 12, 16, 44, and 74. Fungi produce enzymes that populate 20 of 22 families that are considered critical for plant biomass deconstruction. We searched for GH12-encoding genes in 27 Eurotiomycetes genomes. After analyzing 50 GH12-related sequences, the conserved variations of the amino acid sequences were examined. Compared to the endoglucanases, the endo-xyloglucanase-associated YSG deletion at the negative subsites of the catalytic cleft with a SST insertion at the reducing end of the substrate-binding crevice is highly conserved. In addition, a highly conserved alanine residue was identified in all xyloglucan-specific enzymes, and this residue is substituted by arginine in more promiscuous glucanases. To understand the basis for the xyloglucan specificity displayed by certain GH12 enzymes, two fungal GH12 endoglucanases were chosen for mutagenesis and functional studies: an endo-xyloglucanase from Aspergillus clavatus (AclaXegA) and an endoglucanase from A. terreus (AtEglD). Comprehensive molecular docking studies and biochemical analyses were performed, revealing that mutations at the entrance of the catalytic cleft in AtEglD result in a wider binding cleft and the alteration of the substrate-cleavage pattern, implying that a trio of residues coordinates the interactions and binding to linear glycans. The loop insertion at the crevice-reducing end of AclaXegA is critical for catalytic efficiency to hydrolyze xyloglucan. The understanding of the structural elements governing endo-xyloglucanase activity on linear and branched glucans will facilitate future enzyme modifications with potential applications in industrial biotechnology.


Subject(s)
Aspergillus/metabolism , Cellulase/metabolism , Fungal Proteins/metabolism , Glucans/metabolism , Glycoside Hydrolases/metabolism , Xylans/metabolism , Amino Acid Sequence , Aspergillus/chemistry , Aspergillus/genetics , Catalytic Domain , Cellulase/chemistry , Cellulase/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Molecular Docking Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Phylogeny , Protein Folding , Sequence Deletion , Substrate Specificity
5.
Biotechnol Biofuels ; 7: 115, 2014.
Article in English | MEDLINE | ID: mdl-25788980

ABSTRACT

BACKGROUND: The search for novel thermostable xylanases for industrial use has intensified in recent years, and thermophilic fungi are a promising source of useful enzymes. The present work reports the heterologous expression and biochemical characterization of a novel thermostable xylanase (GH10) from the thermophilic fungus Malbranchea pulchella, the influence of glycosylation on its stability, and a potential application in sugarcane bagasse hydrolysis. RESULTS: Xylanase MpXyn10A was overexpressed in Aspergillus nidulans and was active against birchwood xylan, presenting an optimum activity at pH 5.8 and 80°C. MpXyn10A was 16% glycosylated and thermostable, preserving 85% activity after 24 hours at 65°C, and deglycosylation did not affect thermostability. Circular dichroism confirmed the high alpha-helical content consistent with the canonical GH10 family (ß/α)8 barrel fold observed in molecular modeling. Primary structure analysis revealed the existence of eight cysteine residues which could be involved in four disulfide bonds, and this could explain the high thermostability of this enzyme even in the deglycosylated form. MpXyn10A showed promising results in biomass degradation, increasing the amount of reducing sugars in bagasse in natura and in three pretreated sugarcane bagasses. CONCLUSIONS: MpXyn10A was successfully secreted in Aspergillus nidulans, and a potential use for sugarcane bagasse biomass degradation was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...