Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676073

ABSTRACT

In the railway sector, rolling stock and infrastructure must be maintained in perfect condition to ensure reliable and safe operation for passengers. Climate change is affecting the urban and regional infrastructure through sea level rise, water accumulations, river flooding, and other increased-frequency extreme natural situations (heavy rains or snows) which pose a challenge to maintenance. In this paper, the use of artificial intelligence based on predictive maintenance implementation is proposed for the early detection of degraded conditions of a bridge due to extreme climatic conditions. For this prediction, continuous monitoring is proposed, with the aim of establishing alarm thresholds to detect dangerous situations, so restrictions could be determined to mitigate the risk. However, one of the main challenges for railway infrastructure managers nowadays is the high cost of monitoring large infrastructures. In this work, a methodology for monitoring railway infrastructures to define the optimal number of transductors that are economically viable and the thresholds according to which infrastructure managers can make decisions concerning traffic safety is proposed. The methodology consists of three phases that use the application of machine learning (Random Forest) and artificial cognitive systems (LSTM recurrent neural networks).

2.
ACS Appl Mater Interfaces ; 16(15): 19866-19876, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587105

ABSTRACT

The concept of multiphysics, where materials respond to diverse external stimuli, such as magnetic fields, electric fields, light irradiation, stress, heat, and chemical reactions, plays a fundamental role in the development of innovative devices. Nanomanufacturing, especially in low-dimensional systems, enhances the synergistic interactions taking place on the nanoscale. Light-matter interaction, rather than electric fields, holds great promise for achieving low-power, wireless control over magnetism, solving two major technological problems: the feasibility of electrical contacts at smaller scales and the undesired heating of the devices. Here, we shed light on the remarkable reversible modulation of magnetism using visible light in epitaxial Fe3O4/BaTiO3 heterostructure. This achievement is underpinned by the convergence of two distinct mechanisms. First, the magnetoelastic effect, triggered by ferroelectric domain switching, induces a proportional change in coercivity and remanence upon laser illumination. Second, light-matter interaction induces charged ferroelectric domain walls' electrostatic decompensations, acting intimately on the magnetization of the epitaxial Fe3O4 film by magnetoelectric coupling. Crucially, our experimental results vividly illustrate the capability to manipulate magnetic properties using visible light. This concomitant mechanism provides a promising avenue for low-intensity visible-light manipulation of magnetism, offering potential applications in multiferroic devices.

3.
Cureus ; 16(2): e53854, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465193

ABSTRACT

Glaucoma is a prevalent neurodegenerative disease. It causes progressive visual loss and is one of the most common causes of blindness worldwide. It can be categorized into open-angle or closed-angle glaucoma. Primary congenital glaucoma (PCG) is a subdivision of open-angle glaucoma. Non-penetrating deep sclerectomy (NPDS) is a surgical method for managing open-angle and primary congenital glaucoma, which was first introduced in 1990. During NPDS, a sclera flap is raised but not completely removed, and the outer part of Schlemm's canal and trabecular meshwork, along with the juxtacanalicular tissue, are excised without completely penetrating the eye. Therefore, it is considered a safe and efficient option for controlling intraocular pressure. This report shows a unique case of uncommon complication post-deep sclerectomy, a giant retinal tear, after undergoing non-penetrating deep sclerectomy for primary congenital glaucoma.

4.
Nanoscale ; 16(9): 4900-4908, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38323494

ABSTRACT

Optical means instead of electric fields may offer a new pathway for low-power and wireless control of magnetism, holding great potential to design next-generation memory and spintronic devices. Artificial multiferroic materials have shown remarkable suitability as platforms towards the optical control of magnetic properties. However, the practical use of magnetic modulation should be both stable and reversible and, particularly, it should occur at room temperature. Here we show an unprecedented reversible modulation of magnetism using low-intensity visible-light in Fe75Al25/BaTiO3 heterostructures, at room temperature. This is enabled by the existence of highly oriented charged domain walls arranged in arrays of alternating in-plane and out-of-plane ferroelectric domains with stripe morphology. Light actuation yields a net anisotropic stress caused by ferroelectric domain switching, which leads to a 90-degree reorientation of the magnetic easy axis. Significant changes in the coercivity and squareness ratio of the hysteresis loops can be light-modulated, encouraging the development of novel low energy-consumption wireless magneto-optical devices.

5.
Molecules ; 28(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37375292

ABSTRACT

CNTs/Fe-BTC composite materials were synthesized with the one-step solvothermal method. MWCNTs and SWCNTs were incorporated in situ during synthesis. The composite materials were characterized by different analytical techniques and used in the CO2-photocatalytic reduction to value-added products and clean fuels. In the incorporation of CNTs into Fe-BTC, better physical-chemical and optical properties were observed compared to Fe-BTC pristine. SEM images showed that CNTs were incorporated into the porous structure of Fe-BTC, indicating the synergy between them. Fe-BTC pristine showed to be selective to ethanol and methanol; although, it was more selective to ethanol. However, the incorporation of small amounts of CNTs into Fe-BTC not only showed higher production rates but changes in the selectivity compared with the Fe-BTC pristine were also observed. It is important to mention that the incorporation of CNTs into MOF Fe-BTC allowed for increasing the mobility of electrons, decreasing the recombination of charge carriers (electron/hole), and increasing the photocatalytic activity. In both reaction systems (batch and continuous), composite materials showed to be selective towards methanol and ethanol; however, in the continuous system, lower production rates were observed due to the decrease in the residence time compared to the batch system. Therefore, these composite materials are very promising systems to convert CO2 to clean fuels that could replace fossil fuels soon.

6.
Phys Chem Chem Phys ; 25(23): 15829-15838, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37254913

ABSTRACT

Near-infrared (NIR) emitting phosphors are currently receiving considerable attention owing to their high demand in various applications, such as light detection and ranging (LiDAR), short-range communications, security, biosensing and night vision lighting applications. The miniaturization of photonic components demands the integration of thin films into exploitable devices. In this context, NIR emitting ZnAl2O4:Ce/Nd films of hundreds of nanometer thickness are synthesized using a scalable and cost-efficient approach to screen printing. Cerium co-doping is responsible for the Nd emission in the NIR through energy transfer by exciting the films under UV excitation at around 360 nm. Through the proper design of ink, dense Nd/Ce doped ZnAl2O4 ceramic films were produced using polycrystalline alumina. The use of polycrystalline alumina substrates opens up new opportunities because this ceramic is a cheap and well-known substrate for optoelectronic packaging. During manufacturing, as a direct effect of predominant crystal growth over the polycrystalline alumina substrate, an increase in emission intensity is achieved. The results obtained by X-ray photoelectron (XPS) and X-ray absorption near edge spectroscopy (XANES) serve to determine the oxidation state of Ce. The findings of this study indicate that a higher concentration of Ce4+ promotes NIR emission. This study may contribute to a better understanding of film production processes of films based on the ZnAl2O4 matrix and guide future studies on films for NIR emitters.

7.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296671

ABSTRACT

Composite materials based on titania nanoparticles (TiO2 NPs) and three metal-organic frameworks (MOFs) called MIL-53 (Fe) ((Fe (III) (OH) (1,4-BDC)), MILs (Materials Institute Lavoisier)), MIL-100 (Fe) (Fe3O(H2O)2OH(BTC)2), and Fe-BTC (iron-benzenetricarboxylate) with different percentages of TiO2 NPs (0.5, 1, and 2.5% wt.) were synthesized using the solvothermal method and used as photocatalytic materials in the degradation of two dyes (Orange II and Reactive Black 5 (RB5)). The pristine and composite materials were characterized with X-ray diffraction, Raman, UV-Vis and Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The 2.5TiO2/MIL-100 composite material showed the best results for the degradation of both dyes (Reactive Black 5 and Orange II dye, 99% and 99.5% degradation in 105 and 150 min, respectively). The incorporation of TiO2 NPs into MOFs can decrease the recombination of the change carrier in the MOF, increasing the photocatalytic activity of a pristine MOF. Results therefore indicated that the synthesized MOF nanocomposites have good potential for wastewater treatment.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Coloring Agents/chemistry , Iron/chemistry , Metal-Organic Frameworks/chemistry
8.
Inorg Chem ; 61(30): 11886-11896, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35857923

ABSTRACT

Deep-UV (180-280 nm) phosphors have attracted tremendous interest in tri-band-based white light-emitting diode (LED) technology, bio- and photochemistry, as well as various medical fields. However, the application of many UV-emitting materials has been hindered due to their poor thermal or chemical stability, complex synthesis, and environmental harmfulness. A particular concern is posed by the utilization of rare earths affected by rising price and depletion of natural resources. As a consequence, the development of phosphors without rare-earth elements represents an important challenge. In this work, as a potential UV-C phosphor, undoped ZnAl2O4 fibers have been synthesized by a cost-efficient wet chemical route. The rare-earth-free ZnAl2O4 nanofibers exhibit a strong UV emission with two bands peaking at 5.4 eV (230 nm) and 4.75 eV (261 nm). The emission intensity can be controlled by tuning the Zn/Al ratio. A structure-property relationship has been thoroughly studied to understand the origin of the UV emission. For this reason, ZnAl2O4 nanofibers have been analyzed by X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), and Raman spectroscopy techniques showing that a normal spinel structure of the synthesized material is preserved within a wide range of Zn/Al ratios. The experimental evidence of a strong and narrow band at 7.04 eV in the excitation spectrum of the 5.4 eV emission suggests its excitonic nature. Moreover, the 4.75 eV emission is shown to be related to excitons perturbed by lattice defects, presumably oxygen or cation vacancies. These findings shed light on the design of UV-C emission devices for sterilization based on a rare-earth-free phosphor, providing a feasible alternative to the conventional phosphors doped with rare-earth elements.

10.
Materials (Basel) ; 14(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443116

ABSTRACT

Interest in luminescent materials has been continuously growing for several decades, looking for the development of new systems with optimized optical properties. Nowadays, research has been focused on the development of materials that satisfy specific market requirements in optoelectronics, radioelectronics, aerospace, bio-sensing, pigment applications, etc. Despite the fact that several efforts have made in the synthesis of organic luminescent materials, their poor stability under light exposure limits their use. Hence, luminescent materials based on inorganic phosphors are considered a mature topic. Within this subject, glass, glass-ceramics and ceramics have had great technological relevance, depending on the final applications. Supposing that luminescent materials are able to withstand high temperatures, have a high strength and, simultaneously, possess high stability, ceramics may be considered promising candidates to demonstrate required performance. In an ongoing effort to find a suitable synthesis method for their processing, some routes to develop nanostructured luminescent materials are addressed in this review paper. Several ceramic families that show luminescence have been intensively studied in the last few decades. Here, we demonstrate the synthesis of particles based on aluminate using the methods of sol-gel or molten salts and the production of thin films using screen printing assisted by a molten salt flux. The goal of this review is to identify potential methods to tailor the micro-nanostructure and to tune both the emission and excitation properties, focusing on emerging strategies that can be easily transferred to an industrial scale. Major challenges, opportunities, and directions of future research are specified.

11.
Heliyon ; 7(5): e07113, 2021 May.
Article in English | MEDLINE | ID: mdl-34136689

ABSTRACT

A phosphate glass Na2O-Nb2O5-P2O5 (NPP) is incorporated into NaNbO3 (NN) ceramics to examine its impact on the density, rearrangement of structural units, dielectric and energy storage features of the elaborated composites. The sodium niobate ceramic (NN) is prepared using the solid state process, whereas, the Na2O-Nb2O5-P2O5 (NPP) glasses are produced using the method of conventional melt quenching. The glass (NPP) is added to the ceramic (NN) according to the composition (100-x) NN-xNNP; (x = 0, 2.5, 5, and 7.5 %wt). The developed composites are denoted as NN-Gx where x represents the content of glass in %wt. The appropriate sintering temperature for the glass-ceramic composites was measured based on the density measurements. It was found that with the addition of glass, their density was decreased and their fritting at lower temperatures was enhanced. The obtained SST for all composites is about 900 °C. After the densification stage, Raman spectroscopy, X-ray Diffraction, Granulo-laser analysis, and scanning electron microscopy are examined to study the structural approach and the morphology of sintered NN-Gx composites. The NN-G5 composite was found to have a fine grain microstructure that was uniform. The dielectric features of the composite revealed that at ambient temperature the NN-G5 had the greatest dielectric constant. The energy storage performance of the composite was investigated from the P-E plots and the parameters of energy storage. Based on the obtained results, it was concluded that incorporating up to 5% wt. of NNP glass in sodium niobate ceramics positively affects their dielectric and energy storage performances.

12.
ACS Appl Mater Interfaces ; 13(17): 20858-20864, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33881295

ABSTRACT

The use of photonic concepts to achieve nanoactuation based on light triggering requires complex architectures to obtain the desired effect. In this context, the recent discovery of reversible optical control of the domain configuration in ferroelectrics offers a light-ferroic interplay that can be easily controlled. To date, however, the optical control of ferroelectric domains has been explored in single crystals, although polycrystals are technologically more desirable because they can be manufactured in a scalable and reproducible fashion. Here we report experimental evidence for a large photostrain response in polycrystalline BaTiO3 that is comparable to their electrostrain values. Domains engineering is performed through grain size control, thereby evidencing that charged domain walls appear to be the functional interfaces for the light-driven domain switching. The findings shed light on the design of high-performance photoactuators based on ferroelectric ceramics, providing a feasible alternative to conventional voltage-driven nanoactuators.

13.
PLoS One ; 15(10): e0240933, 2020.
Article in English | MEDLINE | ID: mdl-33112912

ABSTRACT

PURPOSE: To assess the performance of an open-view binocular handheld aberrometer (QuickSee) for diagnosing refractive errors in children. METHODS: 123 school-age children (9.9 ± 3.3 years) with moderate refractive error underwent autorefraction (AR) with a standard desktop device and subjective refraction (SR), with or without cycloplegia to determine their eyeglass prescription. Measurements with QuickSee (QS) were taken in 62 of these patients without cycloplegia (NC), and in 61 under cycloplegia (C). Differences in refraction values (AR vs SR vs QS) as well as the visual acuity (VA) achieved by the patients with each method (QS vs SR) were used to evaluate the performance of the device in measuring refractive error. RESULTS: The spherical equivalent refraction obtained by QS agreed within 0.5 D of the SR in 71% (NC) and 70% (C) of the cases. Agreement between the desktop autorefractor and SR for the same threshold was of 61% (NC) and 77% (C). VA resulting from QS refractions was equal to or better than that achieved by SR procedure in 77% (NC) and 74% (C) of the patients. Average improvement in VA with the QS refractions was of 8.6 and 13.4 optotypes for the NC and C groups respectively, while the SR procedure provided average improvements of 8.9 (NC) and 14.8 (C) optotypes. CONCLUSIONS: The high level of agreement between QuickSee and subjective refraction together with the VA improvement achieved in both study groups using QuickSee refractions suggest that the device is a useful autorefraction tool for school-age children.


Subject(s)
Refractive Errors/diagnosis , Vision Tests/instrumentation , Adolescent , Child , Child, Preschool , Eyeglasses , Female , Humans , Male , Optometry/instrumentation , Optometry/methods , Prescriptions , Refraction, Ocular/physiology , Schools , Vision Tests/methods , Visual Acuity/physiology
14.
Optom Vis Sci ; 96(10): 726-732, 2019 10.
Article in English | MEDLINE | ID: mdl-31592955

ABSTRACT

SIGNIFICANCE: There is a critical need for tools that increase the accessibility of eye care to address the most common cause of vision impairment: uncorrected refractive errors. This work assesses the performance of an affordable autorefractor, which could help reduce the burden of this health care problem in low-resource communities. PURPOSE: The purpose of this study was to validate the commercial version of a portable wavefront autorefractor for measuring refractive errors. METHODS: Refraction was performed without cycloplegia using (1) a standard clinical procedure consisting of an objective measurement with a desktop autorefractor followed by subjective refraction (SR) and (2) with the handheld autorefractor. Agreement between both methods was evaluated using Bland-Altman analysis and by comparing the visual acuity (VA) with trial frames set to the resulting measurements. RESULTS: The study was conducted on 54 patients (33.9 ± 14.1 years of age) with a spherical equivalent (M) refraction determined by SR ranging from -7.25 to 4.25 D (mean ± SD, -0.93 ± 1.95 D). Mean differences between the portable autorefractor and SR were 0.09 ± 0.39, -0.06 ± 0.13, and 0.02 ± 0.12 D for M, J0, and J45, respectively. The device agreed within 0.5 D of SR in 87% of the eyes for spherical equivalent power. The average VAs achieved from trial lenses set to the wavefront autorefractor and SR results were 0.02 ± 0.015 and 0.015 ± 0.042 logMAR units, respectively. Visual acuity resulting from correction based on the device was the same as or better than that achieved by SR in 87% of the eyes. CONCLUSIONS: This study found excellent agreement between the measurements obtained with the portable autorefractor and the prescriptions based on SR and only small differences between the VA achieved by either method.


Subject(s)
Aberrometry/instrumentation , Refractive Errors/diagnosis , Aberrometry/economics , Adult , Aged , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Presbyopia/physiopathology , Refraction, Ocular/physiology , Refractive Errors/physiopathology , Reproducibility of Results , Visual Acuity/physiology , Young Adult
15.
Nanomaterials (Basel) ; 9(10)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623263

ABSTRACT

Calcia-alumina binary compounds doped with rare earths and some transition metals cations show persistent luminescence from the visible to the infrared range. Specifically, the blue light can be obtained through the Eu2+ activator center in a potential host, such as dodecacalcium hepta-aluminate (Ca12Al14O33) and monocalcium aluminate (CaAl2O4). By doping with Nd3+, the persistent luminescence can be substantially prolonged; for this reason, the Eu/Nd pair is a potential choice for developing long-lasting blue luminescence. Herein, the phase evolution of the calcia-alumina system via molten salt synthesis is reported as a function of the synthesis temperature and the atmospheric environment. The fraction of CaAl2O4 phase increases when the temperature is higher. Synthesized microparticles of platelet-type morphology represent isolated nanostructured ceramic pieces. Under visible light, the particles are white. This indicates that the followed process solves the dark-gray coloring of phosphor when is synthesized in a reduced atmosphere at high temperature. As regards the synthesis mechanism, which is assisted by the molten flux, the dissolution-diffusion transport process is promoted at the surface of the alumina microparticles. In fact, the emission intensity can be modulated through the phase of the Eu-doped calcium-aluminate discrete platelets synthesized. Consequently, the photoluminescence intensity depends also on the oxidation state of the Eu ion. X-ray absorption near-edge structure and photoluminescence measurements corroborate the Eu reduction and the grain coarsening with the enhancement of the blue emission. The doped phosphors with Eu/Nd show a broad and strong absorption in the region of 320-400 nm and a broad emission band at around 440 nm when they are excited in this absorption range. From a broader perspective, our findings prove that the Ca12Al14O33 and CaAl2O4 phases open new opportunities for research into the design of blue long-lasting emitters for a wide range of fields from ceramic to optoelectronic materials.

16.
ACS Appl Mater Interfaces ; 11(15): 13921-13926, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30938502

ABSTRACT

Finding a feasible principle for a future generation of nano-optomechanical systems is a matter of intensive research, because it may provide new device prospects for optoelectronics and nanomanipulation techniques. Here we show that the strain of a ferroelectric crystal can be manipulated to achieve macroscopic, stable, and reproducible dimensional changes using illumination with photon energy below the material bandgap. The photoresponse can be activated without direct light incidence on the actuation area, because the cooperative nature of the phenomenon extends the photoinduced strain to the whole material. These results may be useful for developing the next generation of high-efficiency photocontrolled ferroelectric devices.

17.
Mater Sci Eng C Mater Biol Appl ; 99: 575-581, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889732

ABSTRACT

This article reports the excellent antimicrobial response of nanoparticulate ZnO against multidrug-resistant organisms (MDROs). We demonstrate that the enhanced antimicrobial activity against MDROs depends on the crystalline defects of ZnO. Hence, this work provides insights on the ZnO-microorganism interactions, and we pose combined physico-chemical action mechanisms against resistant bacteria.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Crystallization , Microbial Sensitivity Tests , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Reactive Oxygen Species/metabolism
18.
ACS Appl Mater Interfaces ; 10(26): 21804-21807, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29931968

ABSTRACT

The remote controlling of ferroic properties with light is nowadays a hot and highly appealing topic in materials science. Here, we shed light on some of the unresolved issues surrounding light-matter coupling in ferroelectrics. Our findings show that the capacitance and, consequently, its related intrinsic material property, i.e., the dielectric constant, can be reversibly adjusted through the light power control. High photodielectric performance is exhibited across a wide range of the visible light wavelength because of the wavelength-independence of the phenomenon. We have verified that this counterintuitive behavior can be strongly ascribed to the existence of "locally free charges" at domain wall.

19.
Invest Ophthalmol Vis Sci ; 59(2): 1119-1124, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29490349

ABSTRACT

Purpose: We evaluate changes in choroidal thickness after intravitreal injection (IVI) therapy for pachychoroid neovasculopathy (PNV). Methods: An observational, retrospective, consecutive case series was studied of 18 patients (18 eyes) who underwent anti-vascular endothelial growth factor (VEGF) therapy for PNV. The 18 fellow eyes in these patients were used as controls. All eyes were evaluated with swept-source optical coherence tomography (SS-OCT) and optical coherence tomography angiography (OCTA). Results: Mean patient age was 68.3 ± 7.0 years. Mean follow-up was 16.4 ± 2.0 months. No differences in the best-corrected visual acuity (BCVA) of the affected eyes were observed between baseline and 12-month follow-up (median Early Treatment of Diabetic Retinopathy Study [ETDRS] score, 77.5 vs. 76 letters, P = 0.074; median logMAR, 0.22 vs. 0.22, P = 0.453). However, subfoveal choroidal thickness (SFCT) decreased significantly from a mean of 317.7 ± 39.9 µm at baseline to 266.9 ± 56.3 µm at 12 months (P ≤ 0.001). Median change in SFCT at 12 months was 44.0 µm (range, 17-133 µm). SFCT decreased by 16% from baseline to month 12. The change in SFCT at 12 months was highly correlated with the number of IVI (rs = 0.762, P ≤ 0.001). No significant changes in SFCT were observed in the fellow eyes over the 12-month study period (median, 267.5 vs. 267.0 µm; P = 0.930). Conclusions: Choroidal thickness decreased significantly from baseline to month 12 in eyes with PNV treated with anti-VEGF injections. This reduction might be attributable to a reduction in choroidal vascular permeability and, thus, with a decrease in PNV activity. Prospective studies are needed to confirm these findings.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroid/pathology , Choroidal Neovascularization/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Aged , Choroidal Neovascularization/diagnostic imaging , Choroidal Neovascularization/physiopathology , Female , Fluorescein Angiography , Humans , Intravitreal Injections , Male , Middle Aged , Organ Size , Ranibizumab/therapeutic use , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Retrospective Studies , Tomography, Optical Coherence/methods , Visual Acuity/physiology
20.
Nanoscale ; 10(2): 705-715, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29242859

ABSTRACT

The control of ferroelectric domain walls at the nanometric level leads to novel interfacial properties and functionalities. In particular, the comprehension of charged domain walls, CDWs, lies at the frontier of future nanoelectronic research. Whereas many of the effects have been demonstrated for ideal archetypes, such as single crystals, and/or thin films, a similar control of CDWs on polycrystalline ferroelectrics has not been achieved. Here, we unambiguously show the presence of charged domain walls on a lead-free (K,Na)NbO3 polycrystalline system. The appearance of CDWs is observed in situ by confocal Raman microscopy and second harmonic generation microscopy. CDWs produce an internal strain gradient within each domain. Specifically, the anisotropic strain develops a crucial piece in the ferroelectric domain switching due to the coupling between the polarization of light and the ferroelectric polarization of the nanodomain in the (K,Na)NbO3 ceramic. This effect leads to the tuning of the ferroelectric domain switching by means of the light polarization angle. Our results will help to understand the relevance of charged domain walls on the ferroelectric domain switching process and may facilitate the development of domain wall nanoelectronics by remote light control utilizing polycrystalline ferroelectrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...