Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 39(1): 23-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37673714

ABSTRACT

Functional trait variation measured on continuous scales has helped ecologists to unravel important ecological processes. However, forest ecologists have recently moved back toward using functional groups. There are pragmatic and biological rationales for focusing on functional groups. Both of these approaches have inherent limitations including binning clearly continuous distributions, poor trait-group matching, and narrow conceptual frameworks for why groups exist and how they evolved. We believe the pragmatic use of functional groups due to data deficiencies will eventually erode. Conversely, we argue that existing conceptual frameworks for why a limited number of tree functional groups may exist is a useful, but flawed, starting point for modeling forests that can be improved through the consideration of unmeasured axes of functional variation.


Subject(s)
Forests , Trees , Phenotype , Ecosystem
2.
Ecol Evol ; 7(17): 7104-7116, 2017 09.
Article in English | MEDLINE | ID: mdl-28904787

ABSTRACT

We monitored soil CO 2 effluxes for over 3 years in a seasonally wet tropical forest in Central Panama using automated and manual measurements from 2013 to 2016. The measurements displayed a high degree of spatial and temporal variability. Temporal variability could be largely explained by surface soil water dynamics over a broad range of temporal scales. Soil moisture was responsible for seasonal cycles, diurnal cycles, intraseasonal variability such as rain-induced pulses following dry spells, as well as suppression during near saturated conditions, and ultimately, interannual variability. Spatial variability, which remains largely unexplained, revealed an emergent role of forest structure in conjunction with physical drivers such as soil temperature and topography. Mean annual soil CO 2 effluxes (±SE) amounted to 1,613 (±59) gC m-2 year-1 with an increasing trend in phase with an El Niño/Southern Oscillation (ENSO) cycle which culminated with the strong 2015-2016 event. We attribute this trend to a relatively mild wet season during which soil saturated conditions were less persistent.

SELECTION OF CITATIONS
SEARCH DETAIL
...