Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(12): e51024, 2012.
Article in English | MEDLINE | ID: mdl-23236420

ABSTRACT

The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.


Subject(s)
Multiple Endocrine Neoplasia Type 2a/diagnosis , Prenatal Diagnosis/methods , Proto-Oncogene Proteins c-ret/genetics , Adult , Female , Genotype , Humans , Multiple Endocrine Neoplasia Type 2a/genetics , Mutation , Polymerase Chain Reaction , Pregnancy
2.
Clin Chim Acta ; 413(3-4): 490-4, 2012 Feb 18.
Article in English | MEDLINE | ID: mdl-22133782

ABSTRACT

INTRODUCTION: Among negative RhD mothers it is essential to know the fetal RhD status in order to avoid the possibility of hemolytic disease of the newborn. In this regard, the detection of fetal DNA in maternal plasma might become a new diagnostic tool. In the current study, we have evaluated the standardization of a Multiplex-PCR targeted towards two exons of the RHD and one SRY gene to monitor RhD negative women. The current study addresses questions concerning feasibility and applicability of this approach into the clinical practice. MATERIALS AND METHODS: Both single and multiplex real-time PCRs targeting RHD exons 5 and 7 and SRY were applied for the detection of fetal-specific RHD sequences and sex in maternal plasma. A large cohort of 2127 women was studied between 10 and 28 weeks of pregnancy. 134 of them were used for single TaqMan PCR studies and 1993 were evaluated using Multiplex TaqMan PCR studies. All of them were serologically typed as RhD negative according to Spanish guidelines. Single and multiplex real-time PCR results were compared with postnatal serology and sex identification. RESULTS: There was a 100% concordance between results obtained with single and multiplex real-time PCR assays. At present, 1012 of the 1993 pregnant women studied gave birth and the results of RHD status obtained with the multiplex TaqMan PCR assay were confirmed postpartum by serological methods showing that sensitivity, specificity, and accuracy of the multiplex assay were 100, 98.6, and 99.3%, respectively. This procedure improved the speed of the assay, avoided over-treatment among RhD negative pregnant women bearing RhD negative fetus, and reduced the requirements for clinical and biological monitoring, resulting in a clinical benefit and cost saving. CONCLUSIONS: The routine determination of fetal RHD status and SRY in maternal plasma, using multiplex real-time PCR, is feasible. The use of multiplex real-time PCR allows improving the response of the laboratory, saving time and reagent costs, opening the door to a complete automatization of the process.


Subject(s)
Cost Savings/methods , DNA/blood , Fetus/metabolism , Real-Time Polymerase Chain Reaction/economics , Real-Time Polymerase Chain Reaction/standards , Rh-Hr Blood-Group System/genetics , Sex-Determining Region Y Protein/genetics , Cell-Free System , DNA/genetics , Female , Genotyping Techniques , Humans , Pregnancy , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...