Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 26(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38920502

ABSTRACT

Gaussian boson sampling (GBS) is considered a candidate problem for demonstrating quantum advantage. We propose an algorithm for the approximate classical simulation of a lossy GBS instance. The algorithm relies on the Taylor series expansion, and increasing the number of terms of the expansion that are used in the calculation yields greater accuracy. The complexity of the algorithm is polynomial in the number of modes given the number of terms is fixed. We describe conditions for the input state squeezing parameter and loss level that provide the best efficiency for this algorithm (by efficient, we mean that the Taylor series converges quickly). In recent experiments that claim to have demonstrated quantum advantage, these conditions are satisfied; thus, this algorithm can be used to classically simulate these experiments.

2.
Entropy (Basel) ; 25(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36832577

ABSTRACT

The original formulation of the boson sampling problem assumed that little or no photon collisions occur. However, modern experimental realizations rely on setups where collisions are quite common, i.e., the number of photons M injected into the circuit is close to the number of detectors N. Here we present a classical algorithm that simulates a bosonic sampler: it calculates the probability of a given photon distribution at the interferometer outputs for a given distribution at the inputs. This algorithm is most effective in cases with multiple photon collisions, and in those cases, it outperforms known algorithms.

3.
Opt Express ; 29(4): 5730-5740, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726106

ABSTRACT

We study the impact of a few cycle extreme terahertz (THz) radiation (the field strength ETHz ∼1-15 MV/cm is well above the DC-field breakdown threshold) on a p-doped Si wafer. Pump-probe measurements of the second harmonic of a weak infrared probe were done at different THz field strengths. The second harmonic yield has an unusual temporal behavior and does not follow the common instantaneous response, ∝ETHz2. These findings were attributed to: (i) the lattice strain by the ponderomotive force of the extreme THz pulse at the maximal THz field strength below 6 MV/cm and (ii) the modulation of the THz field-induced impact ionization rate at the optical probe frequency (due to the modulation of the free carriers' drift kinetic energy from the probe field) at the THz field strength above 6-8 MV/cm.

4.
Phys Rev E ; 97(5-1): 052120, 2018 May.
Article in English | MEDLINE | ID: mdl-29906885

ABSTRACT

Thermal-equilibrated finite classical lattices are considered as a minimal model of the systems showing an interplay between low-energy collective fluctuations and single-site degrees of freedom. Standard local field approach, as well as classical limit of the bosonic DMFT method, do not provide a satisfactory description of Ising and Heisenberg small lattices subjected to an external polarizing field. We show that a dramatic improvement can be achieved within a simple approach, in which the local field appears to be a fluctuating quantity related to the low-energy degree(s) of freedom.

5.
Phys Rev E ; 93(6): 062122, 2016 06.
Article in English | MEDLINE | ID: mdl-27415223

ABSTRACT

Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.

6.
J Phys Condens Matter ; 27(16): 165601, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25817080

ABSTRACT

The band structure calculations in the GGA+U approximation show the presence of additional lattice distortions in the magnetically ordered phase of AgCrS2. The magnetostriction leads to the formation of long and short Cr-Cr bonds in the case when the respective Cr ions have the same or opposite spin projections. These changes in the Cr lattice are accompanied by distortions of the CrS6 octahedra, which in turn lead to the development of spontaneous electric polarization.

7.
Sci Rep ; 5: 8005, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25623327

ABSTRACT

Metastable quantum dynamics of an asymmetric triangular cluster that is coupled to a reservoir is investigated. The dynamics is governed by bath-mediated transitions, which in part require a thermal activation process. The decay rate is controlled by tuning the excitation spectrum of the frustrated cluster. We use the master equation approach and construct transition operators in terms of many-body states. We analyze dynamics of observables and reveal metastability of an excited state and of a magnetically polarized ground state.

SELECTION OF CITATIONS
SEARCH DETAIL
...