Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727316

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Epithelial-Mesenchymal Transition , alpha Catenin , Humans , Actin Cytoskeleton/metabolism , alpha Catenin/metabolism , beta Catenin/metabolism , Vinculin/metabolism , Adherens Junctions/metabolism , Cell Adhesion , Actinin/metabolism , Cell Line, Tumor , Zyxin/metabolism , Phosphorylation , Integrins/metabolism , Animals , Epithelial Cells/metabolism
2.
Tissue Barriers ; 10(4): 2005420, 2022 10 02.
Article in English | MEDLINE | ID: mdl-34821540

ABSTRACT

E-cadherin is the main component of epithelial adherens junctions (AJs), which play a crucial role in the maintenance of stable cell-cell adhesion and overall tissue integrity. Down-regulation of E-cadherin expression has been found in many carcinomas, and loss of E-cadherin is generally associated with poor prognosis in patients. During the last decade, however, numerous studies have shown that E-cadherin is essential for several aspects of cancer cell biology that contribute to cancer progression, most importantly, active cell migration. In this review, we summarize the available data about the input of E-cadherin in cancer progression, focusing on the latest advances in the research of the various roles E-cadherin-based AJs play in cancer cell dissemination. The review also touches upon the "cadherin switching" in cancer cells where N- or P-cadherin replace or are co-expressed with E-cadherin and its influence on the migratory properties of cancer cells.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Humans , Epithelial-Mesenchymal Transition/physiology , Cadherins/metabolism , Adherens Junctions/metabolism , Cell Adhesion , Cell Movement , Neoplasms/metabolism
3.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673054

ABSTRACT

There is ample evidence that, instead of a binary switch, epithelial-mesenchymal transition (EMT) in cancer results in a flexible array of phenotypes, each one uniquely suited to a stage in the invasion-metastasis cascade. The phenotypic plasticity of epithelium-derived cancer cells gives them an edge in surviving and thriving in alien environments. This review describes in detail the actin cytoskeleton and E-cadherin-based adherens junction rearrangements that cancer cells need to implement in order to achieve the advantageous epithelial/mesenchymal phenotype and plasticity of migratory phenotypes that can arise from partial EMT.


Subject(s)
Actin Cytoskeleton/metabolism , Adherens Junctions/metabolism , Epithelial-Mesenchymal Transition , Neoplasms/metabolism , Actin Cytoskeleton/pathology , Adherens Junctions/pathology , Humans , Neoplasms/pathology
4.
Cells ; 9(3)2020 02 29.
Article in English | MEDLINE | ID: mdl-32121325

ABSTRACT

Epithelial-mesenchymal transition (EMT) plays an important role in development and also in initiation of metastasis during cancer. Disruption of cell-cell contacts during EMT allowing cells to detach from and migrate away from their neighbors remains poorly understood. Using immunofluorescent staining and live-cell imaging, we analyzed early events during EMT induced by epidermal growth factor (EGF) in IAR-20 normal epithelial cells. Control cells demonstrated stable adherens junctions (AJs) and robust contact paralysis, whereas addition of EGF caused rapid dynamic changes at the cell-cell boundaries: fragmentation of the circumferential actin bundle, assembly of actin network in lamellipodia, and retrograde flow. Simultaneously, an actin-binding protein EPLIN was phosphorylated, which may have decreased the stability of the circumferential actin bundle. Addition of EGF caused gradual replacement of linear E-cadherin-based AJs with dynamic and unstable punctate AJs, which, unlike linear AJs, colocalized with the mechanosensitive protein zyxin, confirming generation of centripetal force at the sites of cell-cell contacts during EMT. Our data show that early EMT promotes heightened dynamics at the cell-cell boundaries-replacement of stable AJs and actin structures with dynamic ones-which results in overall weakening of cell-cell adhesion, thus priming the cells for front-rear polarization and eventual migration.


Subject(s)
Actin Cytoskeleton/metabolism , Cadherins/metabolism , Epithelial-Mesenchymal Transition/immunology , Cell Adhesion , Humans , Transfection
5.
Biol Cell ; 111(10): 245-261, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31403697

ABSTRACT

BACKGROUND INFORMATION: Metastatic disease is caused by the ability of cancer cells to reach distant organs and form secondary lesions at new locations. Dissemination of cancer cells depends on their migration plasticity - an ability to switch between motility modes driven by distinct molecular machineries. One of such switches is mesenchymal-to-amoeboid transition. Although mesenchymal migration of individual cells requires Arp2/3-dependent actin polymerisation, amoeboid migration is characterised by a high level of actomyosin contractility and often involves the formation of membrane blebs. The acquisition of amoeboid motility by mesenchymal cells is often associated with enhanced metastasis. RESULTS: We studied the ability of mesenchymal HT1080 fibrosarcoma cells to switch to amoeboid motility. We induced the transition from lamellipodium-rich to blebbing phenotype either by down-regulating the Arp2/3 complex, pharmacologically or by RNAi, or by decreasing substrate adhesiveness. Each of these treatments induced blebbing in a subset of fibrosarcoma cells, but not in normal subcutaneous fibroblasts. A significant fraction of HT1080 cells that switched to blebbing behaviour exhibited stem cell-like features, such as expression of the stem cell marker CD133, an increased efflux of Hoechst-33342 and positive staining for Oct4, Sox2 and Nanog. Furthermore, the isolated CD133+ cells demonstrated an increased ability to switch to bleb-rich amoeboid phenotype both under inhibitor's treatment and in 3D collagen gels. CONCLUSIONS: Together, our data show a significant correlation between the increased ability of cells to switch between migration modes and their stem-like features, suggesting that migration plasticity is an additional property of stem-like population of fibrosarcoma cells. This combination of features could facilitate both dissemination of these cells to distant locations, and their establishment self-renewal in a new microenvironment, as required for metastasis formation. SIGNIFICANCE: These data suggest that migration plasticity is a new feature of cancer stem-like cells that can significantly facilitate their dissemination to a secondary location by allowing them to adapt quickly to challenging microenvironments. Moreover, it complements their resistance to apoptosis and self-renewal potential, thus enabling them not only to disseminate efficiently, but also to survive and colonise new niches.


Subject(s)
Cell Movement , Fibrosarcoma/pathology , Neoplastic Stem Cells/pathology , AC133 Antigen/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Humans , Tumor Microenvironment
6.
Cell Res ; 29(6): 432-445, 2019 06.
Article in English | MEDLINE | ID: mdl-30971746

ABSTRACT

The actin cytoskeleton generates and senses forces. Here we report that branched actin networks from the cell cortex depend on ARPC1B-containing Arp2/3 complexes and that they are specifically monitored by type I coronins to control cell cycle progression in mammary epithelial cells. Cortical ARPC1B-dependent branched actin networks are regulated by the RAC1/WAVE/ARPIN pathway and drive lamellipodial protrusions. Accordingly, we uncover that the duration of the G1 phase scales with migration persistence in single migrating cells. Moreover, cortical branched actin more generally determines S-phase entry by integrating soluble stimuli such as growth factors and mechanotransduction signals, ensuing from substratum rigidity or stretching of epithelial monolayers. Many tumour cells lose this dependence for cortical branched actin. But the RAC1-transformed tumour cells stop cycling upon Arp2/3 inhibition. Among all genes encoding Arp2/3 subunits, ARPC1B overexpression in tumours is associated with the poorest metastasis-free survival in breast cancer patients. Arp2/3 specificity may thus provide diagnostic and therapeutic opportunities in cancer.


Subject(s)
Actins/metabolism , Breast Neoplasms/genetics , Cell Cycle , Adult , Aged , Aged, 80 and over , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Chemotherapy, Adjuvant , Cohort Studies , Female , Humans , Middle Aged , RNA, Messenger/genetics
7.
Methods Mol Biol ; 1749: 29-42, 2018.
Article in English | MEDLINE | ID: mdl-29525988

ABSTRACT

The epithelial-mesenchymal transition (EMT) plays an important role in development and cancer progression. Upon EMT, epithelial cells lose stable cell-cell adhesions and reorganize their cytoskeleton to acquire migratory activity. Recent data demonstrated that EMT drives cancer cells from the epithelial state to a hybrid epithelial/mesenchymal phenotype with retention of some epithelial markers (in particular, E-cadherin), which is important for cancer cell dissemination. In vitro studies of the effect of growth factors (in particular, epidermal growth factor (EGF)) on cultured cells can be highly advantageous for understanding the details of the early stages of EMT. The methods described in this chapter are intended for studying intermediate phenotypes of EMT. Time-lapse DIC microscopy is used for visualization of changes in morphology and motility of the cells stimulated with EGF. The transwell migration assay allows the evaluation of the migratory activity of the cells. Studying of dynamics of a fluorescently labeled actin-binding protein F-tractin-tdTomato using confocal microscopy allows detection of EGF-induced changes in the organization of the actin cytoskeleton. Live-cell imaging of cells stably expressing GFP-E-cadherin visualizes reorganization of stable tangential E-cadherin-based adherens junctions (AJs) into unstable radial AJs during the early stages of EMT.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Actin Cytoskeleton/metabolism , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Cell Line , Cell Movement/genetics , Cell Movement/physiology , Epidermal Growth Factor/metabolism , Epithelial-Mesenchymal Transition/genetics , Microscopy, Video/methods , Rats , Time-Lapse Imaging/methods
8.
Tissue Barriers ; 5(3): e1356900, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28783415

ABSTRACT

Adherens junctions (AJs) are molecular complexes that mediate cell-cell adhesive interactions and play pivotal roles in maintenance of tissue organization in adult organisms and at various stages of development. AJs consist of cadherin adhesion receptors, providing homophilic ligation with cadherins on adjacent cells, and members of the catenin protein family: p120, ß- and α-catenin. α-catenin's linkage with the actin cytoskeleton defines the linear or punctate organization of AJs in different cell types. Myosin II-dependent tension drives vinculin recruitment by α-catenin and stabilizes the linkage of the cadherin/catenin complex to F-actin. Neoplastic transformation leads to prominent changes in the organization, regulation and stability of AJs. Epithelial-mesenchymal transition (EMT) whereby epithelial cells lose stable cell-cell adhesion, and reorganize their cytoskeleton to acquire migratory activity, plays the central role in cancer cell invasion and metastasis. Recent data demonstrated that a partial EMT resulting in a hybrid epithelial/mesenchymal phenotype with retention of E-cadherin is essential for cancer cell dissemination. E-cadherin and E-cadherin-based AJs are required for collective invasion and migration, survival in circulation, and metastatic outgrowth.


Subject(s)
Adherens Junctions/metabolism , Cadherins/metabolism , Neoplasms/metabolism , Signal Transduction , Animals , Cell Adhesion , Epithelial-Mesenchymal Transition , Humans , Neoplasms/pathology , rap GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/metabolism
9.
PLoS One ; 10(7): e0133578, 2015.
Article in English | MEDLINE | ID: mdl-26207916

ABSTRACT

Using confocal microscopy, we analyzed the behavior of IAR-6-1, IAR1170, and IAR1162 transformed epithelial cells seeded onto the confluent monolayer of normal IAR-2 epithelial cells. Live-cell imaging of neoplastic cells stably expressing EGFP and of normal epithelial cells stably expressing mKate2 showed that transformed cells retaining expression of E-cadherin were able to migrate over the IAR-2 epithelial monolayer and invade the monolayer. Transformed IAR cells invaded the IAR-2 monolayer at the boundaries between normal cells. Studying interactions of IAR-6-1 transformed cells stably expressing GFP-E-cadherin with the IAR-2 epithelial monolayer, we found that IAR-6-1 cells established E-cadherin-based adhesions with normal epithelial cells: dot-like dynamic E-cadherin-based adhesions in protrusions and large adherens junctions at the cell sides and rear. A comparative study of a panel of transformed IAR cells that differ by their ability to form E-cadherin-based AJs, either through loss of E-cadherin expression or through expression of a dominant negative E-cadherin mutant, demonstrated that E-cadherin-based AJs are key mediators of the interactions between neoplastic and normal epithelial cells. IAR-6-1DNE cells expressing a dominant-negative mutant form of E-cadherin with the mutation in the first extracellular domain practically lost the ability to adhere to IAR-2 cells and invade the IAR-2 epithelial monolayer. The ability of cancer cells to form E-cadherin-based AJs with the surrounding normal epithelial cells may play an important role in driving cancer cell dissemination in the body.


Subject(s)
Cadherins/physiology , Epithelial Cells/cytology , Neoplasm Invasiveness/pathology , Transendothelial and Transepithelial Migration/physiology , Adherens Junctions , Animals , Cadherins/genetics , Cell Line , Cell Line, Transformed , Clone Cells , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/radiation effects , Microscopy, Confocal , Microscopy, Video , Mutation , Nerve Tissue Proteins/physiology , RNA Interference , RNA, Small Interfering/genetics , Rats , Transduction, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...