Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Folia Histochem Cytobiol ; 47(4): 639-46, 2009.
Article in English | MEDLINE | ID: mdl-20430733

ABSTRACT

Lithium (Li) is still useful in the treatment of bipolar disorder. Cellular mechanisms of Li action are not fully understood and include some cytoprotective properties. Data concerning Li effect on the apoptotic mechanisms in cells other than neurons are fragmentary and contradictory. We have investigated anti-apoptotic activity of Li in a lymphoid derived MOLT-4 cell line. Spontaneous and camptothecin-induced apoptosis was analyzed in cells treated with 0-20 mM Li carbonate. Early apoptosis was identified as significant mitochondrial depolarization (JC-1 staining). Later stages of apoptosis were estimated with annexin V binding and by the proportion of cells containing sub-G1 amounts of DNA (PI staining). We have observed a biphasic effect of Li on the proportion of spontaneously apoptotic cells;namely, low (therapeutic) concentrations of Li had a significant effect stabilizing the mitochondrial membrane polarization, while 10 and 20mM Li increased apoptosis. The latter could be seen both as mitochondrial depolarization as well as an increased proportion of sub-G1 cells, accompanied by reduced proportion of S phase cells. Li at concentrations above 2 mM had a significant, dose-dependent, anti-apoptotic effect on the cells undergoing camptothecin induced apoptosis. In conclusion, demonstrated cytoprotective effect of Li is at least partially related to stabilization of mitochondrial membrane potential and to the reduction of DNA damaging effects in proliferating cells; both may form part of the mechanism through which Li is useful in therapy of bipolar disorder, but may have more general consequences.


Subject(s)
Apoptosis/drug effects , Cell Line/drug effects , Cytoprotection/drug effects , Lithium/pharmacology , Lymphocytes , Antipsychotic Agents/pharmacology , Camptothecin/pharmacology , DNA Damage , Humans , Lymphocytes/drug effects , Lymphocytes/physiology , Mitochondria/drug effects , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL