Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 129(12): 2143-6, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10573541

ABSTRACT

Lysyl oxidase (EC 1.4.3.13), a cuproenzyme, can account for 10-30% of the copper present in connective tissue. Herein, we assess the extent to which tissue copper concentrations and lysyl oxidase activity are related because the functional activity of lysyl oxidase and the copper content of chick tendon are both related to dietary copper intake. Chicks (1-d old) were fed diets (basal copper concentration, 0.4 microg/g diet) to which copper was added from 0 to 16 microg/g diet. Liver and plasma copper levels tended to normalize in chickens that consumed from 1 to 4 microg copper/g of diet, whereas tendon copper concentrations suggested an unusual accumulation of copper in chickens that consumed 16 microg copper/g diet. The molecular weight of lysyl oxidase was also estimated using matrix-assisted laser desorption ionization/time-of-flight/mass spectrometry (MALDI/TOF/MS). A novel aspect of these measurements was estimation of protein mass directly from the surface of chick tendons and aortae. Whether copper deficiency (0 added copper) or copper supplementation (16 microg copper/g of diet) caused changes in the molecular weight of protein(s) in tendon corresponding to lysyl oxidase was addressed. The average molecular weight of the peak corresponding to lysyl oxidase in tendon and aorta from copper-deficient birds was 28,386 Da +/- 86, whereas the average molecular weight of corresponding protein in tendon from copper-supplemented birds was 28,639 Da +/- 122. We propose that the shift in molecular weight is due in part to copper binding and the formation of lysyl tyrosyl quinone, the cofactor at the active site of lysyl oxidase.


Subject(s)
Copper/administration & dosage , Protein-Lysine 6-Oxidase/metabolism , Tendons/enzymology , Animals , Aorta/enzymology , Chickens , Copper/deficiency , Copper/pharmacology , Diet , Dose-Response Relationship, Drug , Enzyme Activation , Male , Molecular Weight , Protein-Lysine 6-Oxidase/chemistry , Protein-Lysine 6-Oxidase/drug effects
2.
Am J Clin Nutr ; 67(5 Suppl): 996S-1002S, 1998 05.
Article in English | MEDLINE | ID: mdl-9587142

ABSTRACT

Protein-lysine 6-oxidase (lysyl oxidase) is a cuproenzyme that is essential for stabilization of extracellular matrixes, specifically the enzymatic cross-linking of collagen and elastin. A hypothesis is proposed that links dietary copper levels to dynamic and proportional changes in lysyl oxidase activity in connective tissue. Although nutritional copper status does not influence the accumulation of lysyl oxidase as protein or lysyl oxidase steady state messenger RNA concentrations, the direct influence of dietary copper on the functional activity of lysyl oxidase is clear. The hypothesis is based on the possibility that copper efflux and lysyl oxidase secretion from cells may share a common pathway. The change in functional activity is most likely the result of posttranslational processing of lysyl oxidase. Copper is essential for organic cofactor formation in amine oxidases such as lysyl oxidase. Copper-containing amine oxidases have peptidyl 2,4,5 tri(oxo)phenylalanine (TOPA) at their active centers. TOPA is formed by copper-catalyzed oxidation of tyrosine, which takes place as part of Golgi or trans-Golgi processing. For lysyl oxidase, recent evidence (Science 1996;273:1078-84) indicates that as an additional step, a lysyl group at the active center of lysyl oxidase reacts with TOPA or its precursor to form lysyl tyrosylquinone.


Subject(s)
Copper/metabolism , Extracellular Matrix Proteins/metabolism , Protein-Lysine 6-Oxidase/metabolism , Animals , Extracellular Matrix Proteins/chemistry , Golgi Apparatus/metabolism , Humans , Protein-Lysine 6-Oxidase/biosynthesis , Protein-Lysine 6-Oxidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...