Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
mSystems ; : e0071724, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940523

ABSTRACT

Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL's stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence state. Our data indicate that pgm has the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm in the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence. IMPORTANCE: This study uses a metabolic model to investigate factors that contribute to the persistence of Chlamydia trachomatis serovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence-that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena.

2.
Front Cell Infect Microbiol ; 13: 1185571, 2023.
Article in English | MEDLINE | ID: mdl-37284502

ABSTRACT

In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli, often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively.


Subject(s)
Bacterial Infections , Escherichia coli , Humans , Bacteria/genetics , Bacteria/metabolism , Phenotype
3.
Microbiol Mol Biol Rev ; 87(3): e0003423, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37358451

ABSTRACT

Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.


Subject(s)
Bacterial Proteins , Chlamydia trachomatis , Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Mol Cell Biol ; : 1-13, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36779337

ABSTRACT

The obligate intracellular pathogen Chlamydia trachomatis has unique metabolic requirements as it proceeds through its biphasic developmental cycle from within the inclusion within the host cell. In our previous study, we identified a host protein, PICALM, which localizes to the chlamydial inclusion. PICALM functions in many host pathways including the recycling of receptors, specific SNARE proteins, and molecules like transferrin, and maintaining cholesterol homeostasis. Hence, we hypothesized that PICALM functions to maintain the cholesterol content and to moderate trafficking from the endosomal recycling pathway to the inclusion, which controls chlamydial access to this pathway. In uninfected cells, siRNA knockdown of PICALM resulted in increased cholesterol within the Golgi and transferrin receptor (TfR) positive vesicles (recycling endosomes). PICALM knockdown in cells infected with C. trachomatis resulted in increased levels of Golgi-derived lipid and protein, TfR, transferrin, and Rab11-FIP1 localized to inclusions and a decrease of Golgi fragmentation at and Rab11 trafficking to the inclusion. Interestingly, chlamydial infection alone also increases cholesterol in TfR and Rab11-associated vesicles, and PICALM knockdown reverses this effect. Our data suggest that PICALM functions to balance or limit chlamydial access to multiple subcellular trafficking pathways to maintain the health of the host cell during chlamydial infection.

5.
Infect Immun ; 91(2): e0051322, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36645295

ABSTRACT

Chlamydia is an obligate intracellular pathogen with a highly reduced genome devoid of major stress response genes like relA and spoT, which mediate the stringent response. Interestingly, as an intracellular bacterium dependent on its host for nutrients and as a tryptophan (Trp) auxotroph, Chlamydia is very sensitive to Trp starvation, which is induced in vivo by the host cytokine interferon-γ. In response to Trp starvation, Chlamydia enters a viable but nonreplicating state called persistence. A major characteristic of chlamydial persistence is a block in cell division. We hypothesized that cell division is blocked during persistence by the inability to translate Trp-rich cell division proteins. To test this, we first investigated the translation of various cell division proteins under Trp starvation conditions using inducible expression strains. We observed that the Trp-poor protein MurG and the Trp-neutral protein FtsL were still expressed during persistence, while the expression of the Trp-rich proteins Pbp2, RodA, FtsI/Pbp3, and MraY was significantly reduced. As proof of concept for our hypothesis, we compared expression of a wild-type and mutant isoform of RodZ in which its four Trp codons were mutated. These experiments demonstrated that decreased expression of RodZ during persistence was reversed when no Trp was present in the protein, thus directly linking its expression to its Trp content. Together, these experiments indicate that specific cell division proteins are not produced during persistence. For the first time, our data provide a mechanism that explains the inhibition of cell division during chlamydial persistence mediated by Trp starvation.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Humans , Chlamydia trachomatis/genetics , Tryptophan/metabolism , Chlamydia Infections/microbiology , Codon , Cell Division
6.
7.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187683

ABSTRACT

Upon nutrient starvation, Chlamydia trachomatis serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence is an adaptive response or lack of it. To understand that transcriptomics data were collected for nutrient-sufficient and nutrient-starved CTL. Applying machine learning approaches on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions without having any global stress regulator. This indicated that CTL's stress response is due to lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed phosphoglycerate mutase (pgm) regulates the entry of CTL to the persistence. Later, pgm was found to have the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of pgm and tryptophan starvation experiments revealed the importance of this gene in inducing persistence. Hence, this work, for the first time, introduced thermodynamics and enzyme-cost as tools to gain deeper understanding on CTL persistence.

8.
PLoS Pathog ; 18(9): e1010836, 2022 09.
Article in English | MEDLINE | ID: mdl-36095021

ABSTRACT

Pathogenic Chlamydia species are coccoid bacteria that use the rod-shape determining protein MreB to direct septal peptidoglycan synthesis during their polarized cell division process. How the site of polarized budding is determined in this bacterium, where contextual features like membrane curvature are seemingly identical, is unclear. We hypothesized that the accumulation of the phospholipid, cardiolipin (CL), in specific regions of the cell membrane induces localized membrane changes that trigger the recruitment of MreB to the site where the bud will arise. To test this, we ectopically expressed cardiolipin synthase (Cls) and observed a polar distribution for this enzyme in Chlamydia trachomatis. In early division intermediates, Cls was restricted to the bud site where MreB is localized and peptidoglycan synthesis is initiated. The localization profile of 6xHis tagged Cls (Cls_6xH) throughout division mimicked the distribution of lipids that stain with NAO, a dye that labels CL. Treatment of Chlamydia with 3',6-dinonylneamine (diNN), an antibiotic targeting CL-containing membrane domains, resulted in redistribution of Cls_6xH and NAO-staining phospholipids. In addition, 6xHis tagged MreB localization was altered by diNN treatment, suggesting an upstream regulatory role for CL-containing membranes in directing the assembly of MreB. This hypothesis is consistent with the observation that the clustered localization of Cls_6xH is not dependent upon MreB function or peptidoglycan synthesis. Furthermore, expression of a CL-binding protein at the inner membrane of C. trachomatis dramatically inhibited bacterial growth supporting the importance of CL in the division process. Our findings implicate a critical role for localized CL synthesis in driving MreB assembly at the bud site during the polarized cell division of Chlamydia.


Subject(s)
Chlamydia trachomatis , Peptidoglycan , Anti-Bacterial Agents , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cardiolipins , Cell Division , Chlamydia trachomatis/metabolism , Phospholipids/metabolism
9.
Pathog Dis ; 79(7)2021 08 20.
Article in English | MEDLINE | ID: mdl-34323972

ABSTRACT

We hypothesize that intracellular trafficking pathways are altered in chlamydial infected cells to maximize the ability of Chlamydia to scavenge nutrients while not overtly stressing the host cell. Previous data demonstrated the importance of two eukaryotic SNARE proteins, VAMP4 and syntaxin 10 (Stx10), in chlamydial growth and development. Although, the mechanism for these effects is still unknown. To interrogate whether chlamydial infection altered these proteins' networks, we created BirA*-VAMP4 and BirA*-Stx10 fusion constructs to use the BioID proximity labeling system. While we identified a novel eukaryotic protein-protein interaction between Stx10 and VAPB, we also identified caveats in using the BioID system to study the impact of infection by an obligate intracellular pathogen on SNARE protein networks. The addition of the BirA* altered the localization of VAMP4 and Stx10 during infection with Chlamydia trachomatis serovars L2 and D and Coxiella burnetii Nine Mile Phase II. We also discovered that BirA* traffics to and biotinylates Coxiella-containing vacuoles and, in general, has a propensity for labeling membrane or membrane-associated proteins. While the BioID system identified a novel association for Stx10, it is not a reliable methodology to examine intracellular trafficking pathway dynamics during infection with intracellular pathogens.


Subject(s)
Chlamydia Infections/metabolism , Chlamydia trachomatis/metabolism , Coxiella burnetii/metabolism , Proteome/metabolism , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Bacterial Proteins/metabolism , Biotinylation , Carbon-Nitrogen Ligases/metabolism , Escherichia coli Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Inclusion Bodies/metabolism , Protein Interaction Mapping/methods , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism , Staining and Labeling , Vacuoles/metabolism
10.
Infect Immun ; 89(7): e0009421, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33875478

ABSTRACT

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections. This obligate intracellular bacterium develops within a membrane-bound vacuole called an inclusion, which sequesters the chlamydiae from the host cytoplasm. Host-pathogen interactions at this interface are mediated by chlamydial inclusion membrane proteins (Incs). However, the specific functions of most Incs are poorly characterized. Previous work from our laboratories indicated that expressing an IncF fusion protein at high levels in C. trachomatis L2 negatively impacted inclusion expansion and progeny production. We hypothesize that some Incs function in the structure and organization of the inclusion membrane and that overexpression of those Incs will alter the composition of endogenous Incs within the inclusion membrane. Consequently, inclusion biogenesis and chlamydial development are negatively impacted. To investigate this, C. trachomatis L2 was transformed with inducible expression plasmids encoding IncF-, CT813-, or CT226-FLAG. Overexpression of IncF-FLAG or CT813-FLAG, but not CT226-FLAG, altered chlamydial development, as demonstrated by smaller inclusions, fewer progeny, and increased plasmid loss. The overexpression of CT813-FLAG reduced the detectable levels of endogenous IncE and IncG in the inclusion membrane. Notably, recruitment of sorting nexin-6, a eukaryotic protein binding partner of IncE, was also reduced after CT813 overexpression. Gene expression studies and ultrastructural analysis of chlamydial organisms demonstrated that chlamydial development was altered when CT813-FLAG was overexpressed. Overall, these data indicate that disrupting the expression of specific Incs changed the composition of Incs within the inclusion membrane and the recruitment of associated host cell proteins, which negatively impacted C. trachomatis development.


Subject(s)
Bacterial Proteins/genetics , Chlamydia Infections/microbiology , Chlamydia trachomatis/physiology , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Humans , Membrane Proteins/metabolism , Plasmids/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
11.
Infect Immun ; 89(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33229367

ABSTRACT

Chlamydia trachomatis, an obligate intracellular pathogen, undergoes a biphasic developmental cycle within a membrane-bound vacuole called the chlamydial inclusion. To facilitate interactions with the host cell, Chlamydia modifies the inclusion membrane with type III secreted proteins, called Incs. As with all chlamydial proteins, Incs are temporally expressed, modifying the chlamydial inclusion during the early and mid-developmental cycle. VAMP3 and VAMP4 are eukaryotic SNARE proteins that mediate membrane fusion and are recruited to the inclusion to facilitate inclusion expansion. Their recruitment requires de novo chlamydial protein synthesis during the mid-developmental cycle. Thus, we hypothesize that VAMP3 and VAMP4 are recruited by Incs. In chlamydia-infected cells, identifying Inc binding partners for SNARE proteins specifically has been elusive. To date, most studies examining chlamydial Inc and eukaryotic proteins have benefitted from stable interacting partners or a robust interaction at a specific time postinfection. While these types of interactions are the predominant class that have been identified, they are likely the exception to chlamydia-host interactions. Therefore, we applied two separate but complementary experimental systems to identify candidate chlamydial Inc binding partners for VAMPs. Based on these results, we created transformed strains of C. trachomatis serovar L2 to inducibly express a candidate Inc-FLAG protein. In chlamydia-infected cells, we found that five Incs temporally and transiently interact with VAMP3. Further, loss of incA or ct813 expression altered VAMP3 localization to the inclusion. For the first time, our studies demonstrate the transient nature of certain host protein-Inc interactions that contribute to the chlamydial developmental cycle.


Subject(s)
Chlamydia Infections/metabolism , Chlamydia trachomatis/metabolism , Host-Pathogen Interactions/physiology , Inclusion Bodies/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Vesicle-Associated Membrane Protein 3/metabolism , Virulence/physiology , Chlamydia Infections/physiopathology , Humans , United States
12.
J Proteomics ; 212: 103595, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31760040

ABSTRACT

The obligate intracellular bacterial pathogen, Chlamydia trachomatis, develops within a membrane-bound vacuole termed the inclusion. Affinity purification-mass spectrometry (AP-MS) experiments to study the interactions that occur at the chlamydial inclusion membrane have been performed and, more recently, combined with advances in C. trachomatis genetics. However, each of the four AP-MS published reports used either different experimental approaches or statistical tools to identify proteins that localize at the inclusion. We critically analyzed each experimental approach and performed a meta-analysis of the reported statistically significant proteins for each study, finding that only a few eukaryotic proteins were commonly identified between all four experimental approaches. The two similarly conducted in vivo labeling studies were compared using the same statistical analysis tool, Significance Analysis of INTeractome (SAINT), which revealed a disparity in the number of significant proteins identified by the original analysis. We further examined methods to identify potential background contaminant proteins that remain after statistical analysis. Overall, this meta-analysis highlights the importance of carefully controlling and analyzing the AP-MS data so that pertinent information can be obtained from these various AP-MS experimental approaches. This study provides important guidelines and considerations for using this methodology to study intracellular pathogens residing within a membrane-bound compartment. SIGNIFICANCE: Chlamydia trachomatis, an obligate intracellular pathogen, grows within a membrane-bound vacuole termed the inclusion. The inclusion is studded with bacterial membrane proteins that likely orchestrate numerous interactions with the host cell. Although maintenance of the intracellular niche is vital, an understanding of the host-pathogen interactions that occur at the inclusion membrane is limited by the difficulty in purifying membrane protein fractions from infected host cells. The experimental procedures necessary to solubilize hydrophobic proteins fail to maintain transient protein-protein interactions. Advances in C. trachomatis genetics has allowed us and others to use various experimental approaches in combination with affinity purification mass spectrometry (AP-MS) to study the interactions that occur at the chlamydial vacuolar, or inclusion, membrane. For the first time, two groups have published AP-MS studies using the same tool, the ascorbate peroxidase proximity labeling system (APEX2), which overcomes past experimental limitations because membrane protein interactions are labeled in vivo in the context of infection. The utility of this system is highlighted by its ability to study chlamydial type III secreted inclusion membrane protein (Inc) interactions. Incs act as the mediators of host-pathogen interactions at the inclusion during C. trachomatis infection. When carefully controlled and analyzed, the data obtained can yield copious amounts of useful information. Here, we critically analyzed four previously published studies, including statistical analysis of AP-MS datasets related to Chlamydia-host interactions, to contextualize the data and to identify the best practices in interpreting these types of complex outputs.


Subject(s)
Bacterial Proteins/analysis , Chlamydia Infections/metabolism , Chlamydia trachomatis/metabolism , Eukaryota/metabolism , Inclusion Bodies/metabolism , Membrane Proteins/analysis , Proteomics/methods , Bacterial Proteins/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/isolation & purification , Chromatography, Affinity/methods , HeLa Cells , Host-Pathogen Interactions , Humans , Inclusion Bodies/microbiology , Mass Spectrometry/methods , Membrane Proteins/metabolism , Vacuoles/chemistry , Vacuoles/metabolism , Vacuoles/microbiology
13.
Methods Mol Biol ; 2042: 245-278, 2019.
Article in English | MEDLINE | ID: mdl-31385281

ABSTRACT

In the study of intracellular bacteria that reside within a membrane-bound vacuole, there are many questions related to how prokaryotic or eukaryotic transmembrane or membrane-associated proteins are organized and function within the membranes of these pathogen-containing vacuoles. Yet this host-pathogen interaction interface has proven difficult to experimentally resolve. For example, one method to begin to understand protein function is to determine the protein-binding partners; however, examining protein-protein interactions of hydrophobic transmembrane proteins is not widely successful using standard immunoprecipitation or coimmunoprecipitation techniques. In these scenarios, the lysis conditions that maintain protein-protein interactions are not compatible with solubilizing hydrophobic membrane proteins. In this chapter, we outline two proximity labeling systems to circumvent these issues to study (1) eukaryotic proteins that localize to the membrane-bound inclusion formed by Chlamydia trachomatis using BioID, and (2) chlamydial proteins that are inserted into the inclusion membrane using APEX2. BioID is a promiscuous biotin ligase to tag proximal proteins with biotin. APEX2 is an ascorbate peroxidase that creates biotin-phenoxyl radicals to label proximal proteins with biotin or 3,3'-diaminobenzidine intermediates for examination of APEX2 labeling of subcellular structures using transmission electron microscopy. We present how these methods were originally conceptualized and developed, so that the user can understand the strengths and limitations of each proximity labeling system. We discuss important considerations regarding experimental design, which include careful consideration of background conditions and statistical analysis of mass spectrometry results. When applied in the appropriate context with adequate controls, these methods can be powerful tools toward understanding membrane interfaces between intracellular pathogens and their hosts.


Subject(s)
Chlamydia Infections/pathology , Chlamydia trachomatis/physiology , Host-Pathogen Interactions , Inclusion Bodies/microbiology , Ascorbate Peroxidases/analysis , Bacterial Proteins/analysis , Biotinylation , Chlamydia Infections/microbiology , Chlamydia trachomatis/isolation & purification , HeLa Cells , Humans , Inclusion Bodies/pathology , Staining and Labeling/methods
14.
Infect Immun ; 87(11)2019 11.
Article in English | MEDLINE | ID: mdl-31405957

ABSTRACT

Many intracellular bacteria, including the obligate intracellular pathogen Chlamydia trachomatis, grow within a membrane-bound bacterium-containing vacuole (BCV). Secreted cytosolic effectors modulate host activity, but an understanding of the host-pathogen interactions that occur at the BCV membrane is limited by the difficulty in purifying membrane fractions from infected host cells. We used the ascorbate peroxidase (APEX2) proximity labeling system, which labels proximal proteins with biotin in vivo, to study the protein-protein interactions that occur at the chlamydial vacuolar, or inclusion, membrane. An in vivo understanding of the secreted chlamydial inclusion membrane protein (Inc) interactions (e.g., Inc-Inc and Inc-eukaryotic protein) and how these contribute to overall host-chlamydia interactions at this unique membrane is lacking. We hypothesize some Incs organize the inclusion membrane, whereas other Incs bind eukaryotic proteins to promote chlamydia-host interactions. To study this, Incs fused to APEX2 were expressed in C. trachomatis L2. Affinity purification-mass spectrometry (AP-MS) identified biotinylated proteins, which were analyzed for statistical significance using significance analysis of the interactome (SAINT). Broadly supporting both Inc-Inc and Inc-host interactions, our Inc-APEX2 constructs labeled Incs as well as known and previously unreported eukaryotic proteins localizing to the inclusion. We demonstrate, using bacterial two-hybrid and coimmunoprecipitation assays, that endogenous LRRFIP1 (LRRF1) is recruited to the inclusion by the Inc CT226. We further demonstrate interactions between CT226 and the Incs used in our study to reveal a model for inclusion membrane organization. Combined, our data highlight the utility of APEX2 to capture the complex in vivo protein-protein interactions at the chlamydial inclusion.


Subject(s)
Chlamydia trachomatis/physiology , Bacterial Proteins , Biotinylation , Chlamydia trachomatis/genetics , Chlamydia trachomatis/ultrastructure , Gene Expression Regulation, Bacterial , HeLa Cells , Humans , Mass Spectrometry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Proteins , Streptavidin
15.
Life Sci Alliance ; 2(2)2019 04.
Article in English | MEDLINE | ID: mdl-30902833

ABSTRACT

Intracellular bacteria that live in host cell-derived vacuoles are significant causes of human disease. Parasitism of low-density lipoprotein (LDL) cholesterol is essential for many vacuole-adapted bacteria. Acid sphingomyelinase (ASM) influences LDL cholesterol egress from the lysosome. Using functional inhibitors of ASM (FIASMAs), we show that ASM activity is key for infection cycles of vacuole-adapted bacteria that target cholesterol trafficking-Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia trachomatis, and Chlamydia pneumoniae. Vacuole maturation, replication, and infectious progeny generation by A. phagocytophilum, which exclusively hijacks LDL cholesterol, are halted and C. burnetii, for which lysosomal cholesterol accumulation is bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae, which hijack LDL cholesterol and other lipid sources, are suppressed but less so than A. phagocytophilum or C. burnetii A. phagocytophilum fails to productively infect ASM-/- or FIASMA-treated mice. These findings establish the importance of ASM for infection by intracellular bacteria and identify FIASMAs as potential host-directed therapies for diseases caused by pathogens that manipulate LDL cholesterol.


Subject(s)
Desipramine/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/metabolism , Host-Pathogen Interactions/drug effects , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Animals , Cholesterol, LDL/metabolism , Disease Models, Animal , Endothelial Cells/microbiology , Gram-Negative Bacterial Infections/microbiology , HeLa Cells , Healthy Volunteers , Humans , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/microbiology , Signal Transduction/drug effects , Sphingomyelin Phosphodiesterase/genetics , THP-1 Cells , Vacuoles/metabolism , Vacuoles/microbiology
16.
Article in English | MEDLINE | ID: mdl-28261569

ABSTRACT

Chlamydia grows within a membrane-bound vacuole termed an inclusion. The cellular processes that support the biogenesis and integrity of this pathogen-specified parasitic organelle are not understood. Chlamydia secretes integral membrane proteins called Incs that insert into the chlamydial inclusion membrane (IM). Incs contain at least two hydrophobic transmembrane domains flanked by termini, which vary in size and are exposed to the host cytosol. In addition, Incs are temporally expressed during the chlamydial developmental cycle. Data examining Inc function are limited because of (i) the difficulty in working with hydrophobic proteins and (ii) the inherent fragility of the IM. We hypothesize that Incs function collaboratively to maintain the integrity of the chlamydial inclusion with small Incs organizing the IM and larger Incs interfacing with host cell machinery. To study this hypothesis, we have adapted a proximity-labeling strategy using APEX2, a mutant soybean ascorbate peroxidase that biotinylates interacting and proximal proteins within minutes in the presence of H2O2 and its exogenous substrate, biotin-phenol. We successfully expressed, from an inducible background, APEX2 alone, or fusion proteins of IncATM (TM = transmembrane domain only), IncA, and IncF with APEX2 in Chlamydia trachomatis serovar L2. IncF-APEX2, IncA TM -APEX2, and IncA-APEX2 localized to the IM whereas APEX2, lacking a secretion signal, remained associated with the bacteria. We determined the impact of overexpression on inclusion diameter, plasmid stability, and Golgi-derived sphingomyelin acquisition. While there was an overall impact of inducing construct expression, IncF-APEX2 overexpression most negatively impacted these measurements. Importantly, Inc-APEX2 expression in the presence of biotin-phenol resulted in biotinylation of the IM. These data suggest that Inc expression is regulated to control optimal IM biogenesis. We subsequently defined lysis conditions that solubilized known Incs and were compatible with pulldown conditions. Importantly, we have created powerful tools to allow direct examination of the dynamic composition of the IM, which will provide novel insights into key interactions that promote chlamydial growth and development within the inclusion.


Subject(s)
Chlamydia trachomatis/growth & development , Host-Pathogen Interactions , Inclusion Bodies/microbiology , Intracellular Membranes/chemistry , Staining and Labeling/methods , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotinylation , Hydrogen Peroxide/metabolism , Membrane Proteins/analysis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics
17.
Infect Immun ; 84(9): 2703-13, 2016 09.
Article in English | MEDLINE | ID: mdl-27400720

ABSTRACT

In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis.


Subject(s)
Chlamydophila pneumoniae/genetics , Codon/genetics , Interferon-gamma/metabolism , Transcription, Genetic/genetics , Tryptophan/genetics , Cell Line , Chlamydophila pneumoniae/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Operon/genetics , Up-Regulation/genetics
18.
Article in English | MEDLINE | ID: mdl-26442221

ABSTRACT

Chlamydia trachomatis, an obligate intracellular pathogen, grows inside of a vacuole, termed the inclusion. Within the inclusion, the organisms differentiate from the infectious elementary body (EB) into the reticulate body (RB). The RB communicates with the host cell through the inclusion membrane to obtain the nutrients necessary to divide, thus expanding the chlamydial population. At late time points within the developmental cycle, the RBs respond to unknown molecular signals to redifferentiate into infectious EBs to perpetuate the infection cycle. One strategy for Chlamydia to obtain necessary nutrients and metabolites from the host is to intercept host vesicular trafficking pathways. In this study we demonstrate that a trans-Golgi soluble N-ethylmaleimide-sensitive factor attachment protein (SNARE), syntaxin 10, and/or syntaxin 10-associated Golgi elements colocalize with the chlamydial inclusion. We hypothesized that Chlamydia utilizes the molecular machinery of syntaxin 10 at the inclusion membrane to intercept specific vesicular trafficking pathways in order to create and maintain an optimal intra-inclusion environment. To test this hypothesis, we used siRNA knockdown of syntaxin 10 to examine the impact of the loss of syntaxin 10 on chlamydial growth and development. Our results demonstrate that loss of syntaxin 10 leads to defects in normal chlamydial maturation including: variable inclusion size with fewer chlamydial organisms per inclusion, fewer infectious progeny, and delayed or halted RB-EB differentiation. These defects in chlamydial development correlate with an overabundance of NBD-lipid retained by inclusions cultured in syntaxin 10 knockdown cells. Overall, loss of syntaxin 10 at the inclusion membrane negatively affects Chlamydia. Understanding host machinery involved in maintaining an optimal inclusion environment to support chlamydial growth and development is critical toward understanding the molecular signals involved in successful progression through the chlamydial developmental cycle.


Subject(s)
Chlamydia trachomatis/growth & development , Host-Pathogen Interactions , Inclusion Bodies/microbiology , Qa-SNARE Proteins/metabolism , Epithelial Cells/microbiology , Epithelial Cells/physiology , Gene Knockdown Techniques , HeLa Cells , Humans , Qa-SNARE Proteins/antagonists & inhibitors , Qa-SNARE Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Infect Immun ; 73(9): 5458-67, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16113262

ABSTRACT

Exoenzyme S (ExoS) is a bifunctional toxin directly translocated into eukaryotic cells by the Pseudomonas aeruginosa type III secretory (TTS) process. The amino-terminal GTPase-activating (GAP) activity and the carboxy-terminal ADP-ribosyltransferase (ADPRT) activity of ExoS have been found to target but exert opposite effects on the same low-molecular-weight G protein, Rac1. ExoS ADP-ribosylation of Rac1 is cell line dependent. In HT-29 human epithelial cells, where Rac1 is ADP-ribosylated by TTS-ExoS, Rac1 was activated and relocalized to the membrane fraction. Arg66 and Arg68 within the GTPase-binding region of Rac1 were identified as preferred sites of ExoS ADP-ribosylation. The modification of these residues by ExoS would be predicted to interfere with Rac1 inactivation and explain the increase in active Rac1 caused by ExoS ADPRT activity. Using ExoS-GAP and ADPRT mutants to examine the coordinate effects of the two domains on Rac1 function, limited effects of ExoS-GAP on Rac1 inactivation were evident in HT-29 cells. In J774A.1 macrophages, where Rac1 was not ADP-ribosylated, ExoS caused a decrease in the levels of active Rac1, and this decrease was linked to ExoS-GAP. Using immunofluorescence staining of Rac1 to understand the cellular basis for the targeting of ExoS ADPRT activity to Rac1, an inverse relationship was observed between Rac1 plasma membrane localization and Rac1 ADP-ribosylation. The results obtained from these studies have allowed the development of a model to explain the differential targeting and coordinate effects of ExoS GAP and ADPRT activity on Rac1 within the host cell.


Subject(s)
ADP Ribose Transferases/physiology , Pseudomonas aeruginosa/enzymology , rac GTP-Binding Proteins/metabolism , Adenosine Diphosphate Ribose/metabolism , Animals , Bacterial Toxins , CHO Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Cricetinae , Fluorescent Antibody Technique , HT29 Cells , Humans , Jurkat Cells , Mice , Mutation , NIH 3T3 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Rats , Vero Cells , p21-Activated Kinases , rac GTP-Binding Proteins/genetics
20.
Infect Immun ; 73(1): 638-43, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15618208

ABSTRACT

Pseudomonas aeruginosa ExoS is a type III-secreted type III-secreted, bifunctional protein that causes diverse effects on eukaryotic cell function. The coculture of P. aeruginosa strains expressing ExoS with HL-60 myeloid cells revealed the cell line to be resistant to the toxic effects of ExoS. Differentiation of HL-60 cells with phorbol 12-myristate 13-acetate (TPA) rendered the cell line sensitive to ExoS. To understand the cellular basis for the alteration in sensitivity, undifferentiated and TPA-differentiated HL-60 cells were compared for differences in bacterial adherence, type III secretion induction, and ExoS translocation. These comparisons found that ExoS was translocated more efficiently in TPA-differentiated HL-60 cells than in undifferentiated cells. The studies support the ability of eukaryotic cells to influence P. aeruginosa TTS at the level of membrane translocation.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Pseudomonas aeruginosa/metabolism , Adenosine Diphosphate Ribose/metabolism , HL-60 Cells , Humans , Protein Transport , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...