Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Parasitol Parasites Wildl ; 24: 100950, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966857

ABSTRACT

Males and females in sexually dimorphic species show differences in their physiology and behaviour due to differences in energetic investment into reproduction and soma. This means that the two sexes may show different patterns of parasitism at different times of the year. In this study, we evaluate the abundance of fecal eggs and larvae of 5 parasite types (Strongyles, Nematodirus spp., Marshallagia marshalli., Protostrongylus spp. lungworms, and Eimeria spp.) in relation to season and sex in Rocky Mountain bighorn sheep (Ovis canadensis). We use fecal egg counts (FEC) as a proxy for infection intensity. Parasite FECs differed between male and female bighorn sheep and varied with season. We found pronounced fluctuations in fecal egg counts of various parasite species in males and females across different seasons and reproductive stages. Strongyle counts were significantly higher during late gestation and lactation/summer, and particularly pronounced in males. Nematodirus counts were highest during late gestation in females and during the rut in males. Marshallagia counts peaked during late gestation in females and during the rut in males. Protostrongylus spp. lungworm counts were highest during late gestation in females and in males during lactation/summer and the rut. Eimeria oocyst counts varied across seasons, with higher counts in males during the rut and in females during winter and late gestation. Additionally, significant differences in Strongyle counts were observed between coursing and tending rams, with tending rams exhibiting higher counts. We discuss why the sexes might differ in FECs and suggest that differences between FECs of the parasites across seasons may be due to different life cycles and cold tolerance of the parasites themselves.

2.
Behav Ecol ; 35(2): arae013, 2024.
Article in English | MEDLINE | ID: mdl-38486921

ABSTRACT

Lifetime fitness and its determinants are an important topic in the study of behavioral ecology and life-history evolution. Early life conditions comprise some of these determinants, warranting further investigation into their impact. In some mammals, babies born lighter tend to have lower life expectancy than those born heavier, and some of these life-history traits are passed on to offspring, with lighter-born females giving birth to lighter offspring. We investigated how weight at weaning, the relative timing of birth in the season, maternal weight, and maternal age affected the longevity and lifetime reproductive success (LRS) of female Columbian ground squirrels (Urocitellus columbianus). We hypothesized that early life conditions such as offspring weight would not only have lifetime fitness consequences but also intergenerational effects. We found that weight at weaning had a significant impact on longevity, with heavier individuals living longer. The relative timing of an individual's birth did not have a significant association with either longevity or LRS. Individuals born to heavier mothers were found to have significantly higher LRS than those born to lighter mothers. Finally, maternal age was found to be significantly associated with their offspring's LRS, with older mothers having less successful offspring. Our results provide evidence that early life conditions do have lifelong fitness and sometimes intergenerational consequences for Columbian ground squirrels.

3.
Glob Chang Biol ; 29(22): 6217-6233, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37615247

ABSTRACT

Across a species' range, populations are exposed to their local thermal environments, which on an evolutionary scale, may cause adaptative differences among populations. Helminths often have broad geographic ranges and temperature-sensitive life stages but little is known about whether and how local thermal adaptation can influence their response to climate change. We studied the thermal responses of the free-living stages of Marshallagia marshalli, a parasitic nematode of wild ungulates, along a latitudinal gradient. We first determine its distribution in wild sheep species in North America. Then we cultured M. marshalli eggs from different locations at temperatures from 5 to 38°C. We fit performance curves based on the metabolic theory of ecology to determine whether development and mortality showed evidence of local thermal adaptation. We used parameter estimates in life-cycle-based host-parasite models to understand how local thermal responses may influence parasite performance under general and location-specific climate-change projections. We found that M. marshalli has a wide latitudinal and host range, infecting wild sheep species from New Mexico to Yukon. Increases in mortality and development time at higher temperatures were most evident for isolates from northern locations. Accounting for location-specific parasite parameters primarily influenced the magnitude of climate change parasite performance, while accounting for location-specific climates primarily influenced the phenology of parasite performance. Despite differences in development and mortality among M. marshalli populations, when using site-specific climate change projections, there was a similar magnitude of impact on the relative performance of M. marshalli among populations. Climate change is predicted to decrease the expected lifetime reproductive output of M. marshalli in all populations while delaying its seasonal peak by approximately 1 month. Our research suggests that accurate projections of the impacts of climate change on broadly distributed species need to consider local adaptations of organisms together with local temperature profiles and climate projections.

4.
Proc Biol Sci ; 290(1994): 20230128, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36883278

ABSTRACT

Echinococcus multilocularis (Em), the causative agent of human alveolar echinococcosis (AE), is present in the Holarctic region, and several genetic variants deem to have differential infectivity and pathogenicity. An unprecedented outbreak of human AE cases in Western Canada infected with a European-like strain circulating in wild hosts warranted assessment of whether this strain was derived from a recent invasion or was endemic but undetected. Using nuclear and mitochondrial markers, we investigated the genetic diversity of Em in wild coyotes and red foxes from Western Canada, compared the genetic variants identified to global isolates and assessed their spatial distribution to infer possible invasion dynamics. Genetic variants from Western Canada were closely related to the original European clade, with lesser genetic diversity than that expected for a long-established strain and spatial genetic discontinuities within the study area, supporting the hypothesis of a relatively recent invasion with various founder events.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Parasites , Humans , Animals , Echinococcus multilocularis/genetics , Echinococcosis/epidemiology , Echinococcosis/veterinary , Canada , Foxes
5.
Biology (Basel) ; 11(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009863

ABSTRACT

Nonlethal human disturbances have been confirmed to have a negative effect on wildlife in a variety of ways, including on behaviors. In many studies, the impact of human disturbances on gregarious species of wildlife is assessed through changes in their social organization and vigilance. In our study in the Kalamaili Nature Reserve, China, we wanted to estimate the impacts of differing levels of human disturbances on two different group types (mixed-sex and all-male) of goitered gazelle, Gazella subgutturosa, living in three functional zones (experimental, buffer, and core zones), which represent high, medium, and low human disturbance levels, respectively. In addition, we studied the time spent vigilant as a function of group size with different levels of human disturbances in the three zones. In general, mixed-sex gazelle groups were of similar sizes in the three different zones, while all-male groups slightly differed in their sizes between the experimental and buffer zones. This may indicate that human disturbances have varying effects on the different group types, with smaller-sized, single-sex groups being more significantly affected by human disturbances than larger-sized, mixed-sex groups. Goitered gazelle showed higher vigilance levels in the experimental zone than in the two other zones. A trend of decreasing vigilance varying linearly with group size was also found in the three zones, and the rate of decrease was higher in the experimental zone. Increased habitat fragmentation and human activities brought goitered gazelle and humans closer together in the core zone. Therefore, stopping mining activities and returning the reserve to a continuous habitat with fewer environmental disturbances is the best way to establish and protect a stable population of this endangered species of gazelle.

6.
PLoS Negl Trop Dis ; 15(5): e0009428, 2021 05.
Article in English | MEDLINE | ID: mdl-34038403

ABSTRACT

Echinococcus multilocularis (Em) is a zoonotic parasite considered a global emergent pathogen. Recent findings indicate that the parasite is expanding its range in North America and that European-type haplotypes are circulating in western Canada. However, genetic analyses are usually conducted only on a few parasites out of thousands of individuals within each definitive host, likely underestimating the prevalence of less common haplotypes. Moreover, mixed infections with several mtDNA haplotypes in the same host have been reported, but their relative abundance within the host was never estimated. We aimed to 1) estimate the frequency of co-infections of different Em haplotypes in coyotes (Canis latrans) and red foxes (Vulpes vulpes) from western Canada and their relative abundance within the definitive hosts, 2) detect less prevalent haplotypes by sampling a larger proportion of the parasite subpopulation per host, and 3) investigate differences in the distribution of Em haplotypes in these main definitive hosts; foxes and coyotes. We extracted DNA from ~10% of the worm subpopulation per host (20 foxes and 47 coyotes) and used deep amplicon sequencing (NGS technology) on four loci, targeting the most polymorphic regions from the mitochondrial genes cox1 (814 bp), nad1 (344 bp), and cob (387 bp). We detected the presence of mixed infections with multiple Em haplotypes and with different Echinococcus species including Em and E. granulosus s.l. genotypes G8/G10, low intraspecific diversity of Em, and a higher abundance of the European-type haplotypes in both hosts. Our results suggest a population expansion of the European over the North American strain in Alberta and a limited distribution of some European-type haplotypes. Our findings indicate that deep amplicon sequencing represents a valuable tool to characterize Em in multiple hosts, to assess the current distribution and possible origins of the European strain in North America. The potential use of next-generation sequencing technologies is particularly important to understand the patterns of geographic expansion of this parasite.


Subject(s)
Coyotes/parasitology , Echinococcosis/epidemiology , Echinococcus multilocularis/genetics , Foxes/parasitology , Alberta/epidemiology , Animals , DNA, Mitochondrial/genetics , Haplotypes , High-Throughput Nucleotide Sequencing , Prevalence
7.
Parasitology ; 148(13): 1532-1544, 2021 11.
Article in English | MEDLINE | ID: mdl-35060461

ABSTRACT

In a fast-changing and globalized world, parasites are moved across continents at an increasing pace. Co-invasion of parasites and their hosts is leading to the emergence of infectious diseases at a global scale, underlining the need for integration of biological invasions and disease ecology research. In this review, the ecological and evolutionary factors influencing the invasion process of parasites with complex life cycles were analysed, using the invasion of the European strain of Echinococcus multilocularis in North America as a model. The aim was to propose an ecological framework for investigating the invasion of parasites that are trophically transmitted through predator­prey interactions, showing how despite the complexity of the cycles and the interactions among multiple hosts, such parasites can overcome multiple barriers and become invasive. Identifying the key ecological processes affecting the success of parasite invasions is an important step for risk assessment and development of management strategies, particularly for parasites with the potential to infect people (i.e. zoonotic).


Subject(s)
Echinococcus multilocularis , Parasites , Animals , Host-Parasite Interactions , Humans , Life Cycle Stages , North America/epidemiology
8.
Sci Rep ; 10(1): 15626, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973197

ABSTRACT

An understanding of the mechanisms influencing prenatal characteristics is fundamental to comprehend the role of ecological and evolutionary processes behind survival and reproductive success in animals. Although the negative influence of parasites on host fitness is undisputable, we know very little about how parasitic infection in reproductive females might influence prenatal factors such as fetal development and sex allocation. Using an archival collection of Dall's sheep (Ovis dalli dalli), a capital breeder that depends on its body reserves to overcome the arctic winter, we investigated the direct and indirect impacts of the parasite community on fetal development and sex allocation. Using partial least squares modelling, we observed a negative effect of parasite community on fetal development, driven primarily by the nematode Marshallagia marshalli. Principal component analysis demonstrated that mothers with low parasite burden and in good body condition were more likely to have female versus male fetuses. This association was primarily driven by the indirect effect of M. marshalli on ewe body condition. Refining our knowledge of the direct and indirect impact that parasite communities can have on reproduction in mammals is critical for understanding the effects of infectious diseases on wildlife populations. This can be particularly relevant for species living in ecosystems sensitive to the effects of global climate change.


Subject(s)
Fetal Development , Sheep Diseases/parasitology , Trichostrongyloidea/physiology , Trichostrongyloidiasis/veterinary , Animals , Animals, Wild , Female , Male , Sex Factors , Sheep , Sheep Diseases/pathology , Trichostrongyloidiasis/parasitology , Trichostrongyloidiasis/pathology
9.
Animals (Basel) ; 10(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521768

ABSTRACT

Hunting activity is usually seen as a factor capable of causing an intense stress response in wildlife that may lead to short but also long-term stress. In the Lousã Mountain, Portugal, the population of red deer (Cervus elaphus) is the target of intensive seasonal hunting. We collected and measured cortisol (and its metabolites) in three tissues types (blood, feces and hair) from red deer hunted during two hunting seasons to evaluate the stress levels at different time windows. We also assessed the immunological and physical condition of the animals. We predicted that the hunting activity would act as a stressor inducing increased short and long-term stress levels in the population. Results showed an increase in hair cortisol levels during the months of harvesting. Surprisingly, the tendency for plasma cortisol levels was to decrease during the hunting season, which could be interpreted as habituation to hunting activity, or due to the hunting duration. Contrary to our predictions, fecal cortisol metabolites did not show any clear patterns across the months. Overall, our results suggest an influence of hunting activities on the physiological stress in red deer. In addition, hair seems to be useful to measure physiological stress, although more studies are required to fully understand its suitability as an indicator of long-term stress. Methodologically, our approach highlights the importance of simultaneously using different methods to assess short and long-term effects in studies on physiological stress reactions.

10.
Int J Parasitol ; 50(2): 161-169, 2020 02.
Article in English | MEDLINE | ID: mdl-32004511

ABSTRACT

Marshallagia marshalli is a multi-host gastrointestinal nematode that infects a variety of artiodactyl species from temperate to Arctic latitudes. Eggs of Marshallagia are passed in host faeces and develop through three larval stages (L1, L2, and L3) in the environment. Although eggs normally hatch as L1s, they can also hatch as L3s. We hypothesised that this phenotypic plasticity in hatching behaviour may improve fitness in subzero and highly variable environments, and this may constitute an evolutionary advantage under current climate change scenarios. To test this, we first determined if the freeze tolerance of different free-living stages varied at different temperatures (-9 °C, -20 °C and -35 °C). We then investigated if there were differences in freeze tolerance of M. marshalli eggs sourced from three discrete, semi-isolated, populations of wild bighorn and thinhorn sheep living in western North America (latitudes: 40°N, 50°N, 64°N). The survival rates of eggs and L3s were significantly higher than L1s at -9 °C and -20 °C, and survival of all three stages decreased significantly with increasing freeze duration and decreasing temperature. The survival of unhatched L1s was significantly higher than the survival of hatched L1s. There was no evidence of local thermal adaptation in freeze tolerance among eggs from different locations. We conclude that developing to the L3 in the egg may result in a fitness advantage for M. marshalli, with the egg protecting the more vulnerable L1 under freezing conditions. This phenotypic plasticity in life-history traits of M. marshalli might be an important capacity, a potential exaptation capable of enhancing parasite fitness under temperature extremes.


Subject(s)
Sheep, Bighorn/parasitology , Sheep/parasitology , Strongylida Infections/veterinary , Trichostrongyloidea/physiology , Acclimatization , Adaptation, Physiological , Animals , Climate Change , Eggs , Feces/parasitology , Freezing , Gastrointestinal Tract/parasitology , Nematoda/parasitology , Nematoda/physiology , North America , Population Dynamics , Ruminants , Sheep Diseases/parasitology , Temperature , Trichostrongyloidea/parasitology
11.
Int J Parasitol ; 49(10): 789-796, 2019 09.
Article in English | MEDLINE | ID: mdl-31361997

ABSTRACT

Despite the economic, social and ecological importance of the ostertagiine abomasal nematode Marshallagia marshalli, little is known about its life history traits and its adaptations to cope with environmental extremes. Conserved species-specific traits can act as exaptations that may enhance parasite fitness in changing environments. Using a series of experiments, we revealed several unique adaptations of the free-living stages of M. marshalli that differ from other ostertagiines. Eggs were isolated from the feces of bighorn sheep (Ovis canadensis) from the Canadian Rocky Mountains and were cultured at different temperatures and with different media. Hatching occurred primarily as L1s in an advanced stage of development, morphologically very similar to a L2. When cultured at 20 °C, however, 2.86% of eggs hatched as L3, with this phenomenon being significantly more common at higher temperatures, peaking at 30 °C with 28.95% of eggs hatching as L3s. After hatching, free-living larvae of M. marshalli did not feed nor grow as they matured from L1 to infective L3. These life history traits seem to be adaptations to cope with the extreme environmental conditions that Marshallagia faces across its extensive latitudinal distribution in North America and Eurasia. In order to refine the predictions of parasite dynamics under scenarios of a changing climate, basic life history traits and temperature-dependent phenotypic behaviour should be incorporated into models for parasite biology.


Subject(s)
Adaptation, Physiological/physiology , Life History Traits , Trichostrongyloidea/physiology , Trichostrongyloidiasis/veterinary , Alberta , Animals , Environment , Feces/parasitology , Hot Temperature , Larva/physiology , Phenotype , Sheep, Bighorn/parasitology , Trichostrongyloidea/classification , Trichostrongyloidea/genetics , Trichostrongyloidea/growth & development , Trichostrongyloidiasis/parasitology , Trichostrongyloidiasis/transmission
12.
PLoS One ; 13(10): e0206664, 2018.
Article in English | MEDLINE | ID: mdl-30372495

ABSTRACT

Rumination is the repeated process of regurgitation of a food bolus, followed by chewing, swallowing, and regurgitation, which enhance nutrient assimilation. Time spent in lateral recumbency (i.e., bedded, lying) has often been used as a proxy for time spent ruminating due to difficulties of observing detailed rumination behavior in the field. The actual proportion of time spent ruminating, or other activities, will in turn be affected by the age and sex of an individual but also with changes in food quality. We studied the effects of intrinsic and extrinsic factors on time spent ruminating, bedding, proportion of bedding time spent ruminating, and grazing of individually marked bighorn sheep (Ovis canadensis). Our results show that bighorn sheep spent more time ruminating and less time grazing in summer and autumn. Overall, females spent less time ruminating, and more time grazing than males. Bighorn sheep decreased their time spent ruminating with increasing acid detergent fiber (ADF) content in the forage. Age influenced the time spent grazing, bedded and proportion of bedded time spent ruminating. Older sheep not only increased their bedding time but also their time spent bedded without ruminating compared to younger individuals. The proportion of time spent grazing was also affected by age, with a decrease in the proportion of time spent grazing with increasing age. Our results suggest that these four behaviors are plastic and variable. We thus conclude that bedding time does not reflect time spent ruminating but that the latter is affected by both intrinsic and extrinsic factors.


Subject(s)
Rumination, Digestive , Sheep, Bighorn , Age Factors , Animals , Feeding Behavior/physiology , Rumination, Digestive/physiology , Seasons , Sex Factors , Sheep, Bighorn/physiology , Sheep, Bighorn/psychology , Sleep/physiology , Time Factors
13.
Sci Rep ; 8(1): 13095, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166602

ABSTRACT

Sexual segregation is very common in sexually size dimorphic ungulates and may be the result of different habitat preferences and/or differential social behaviours of males and females. Various hypotheses have been put forward to explain this phenomenon. In the present research, we examined sexual segregation in a quite poorly understood species, the Siberian ibex. The species presents a marked sexual size dimorphism, with adult males weighing double as much as females. We use the Sexual Segregation and Aggregation Statistics (SSAS) to analyze the sex-age patterns of sexual segregation in this species, to understand the relevance of social factors. Our results show that adult Siberian ibex males were socially segregated from females all year round, except during the rutting season. Furthermore, the degree of segregation between females and males was influenced by the age of males. Moreover, the patterns of social segregation within males also increased with male age, reaching maximum values for males of 9 years-old and older, which means male age plays an important role in the sexual segregation of this species. This study clearly shows that social factors play a key role in the sexual segregation of Siberian ibex.


Subject(s)
Aging/physiology , Deer/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Male , Social Behavior
14.
PLoS One ; 11(1): e0146725, 2016.
Article in English | MEDLINE | ID: mdl-26756993

ABSTRACT

Animals receive anti-predator benefits from social behavior. As part of a group, individuals spend less time being vigilant, and vigilance decreases with increasing group size. This phenomenon, called "the many-eyes effect", together with the "encounter dilution effect", is considered among the most important factors determining individual vigilance behavior. However, in addition to group size, other social and environmental factors also influence the degree of vigilance, including disturbance from human activities. In our study, we examined vigilance behavior of Khulans (Equus hemionus) in the Xinjiang Province in western China to test whether and how human disturbance and group size affect vigilance. According to our results, Khulan showed a negative correlation between group size and the percentage time spent vigilant, although this negative correlation depended on the groups' disturbance level. Khulan in the more disturbed area had a dampened benefit from increases in group size, compared to those in the undisturbed core areas. Provision of continuous areas of high-quality habitat for Khulans will allow them to form larger undisturbed aggregations and to gain foraging benefits through reduced individual vigilance, as well as anti-predator benefits through increased probability of predator detection.


Subject(s)
Behavior, Animal/physiology , Equidae/physiology , Human Activities , Social Behavior , Animals , China , Geography , Humans , Linear Models , Population Density
15.
Int J Parasitol Parasites Wildl ; 4(3): 301-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26236631

ABSTRACT

Within many species, males are often more heavily parasitised than females. Several hypotheses have been proposed to explain this phenomenon, including immunocompetence handicaps, sexual size dimorphism and behavioural differences. Here we set out to test the latter two hypotheses and make inferences about the former by assessing patterns of ectoparasitism across various life-history stages in a population of North American red squirrels (Tamiasciurus hudsonicus). We also conducted an ectoparasite removal experiment to investigate the effects of ectoparasites on male body condition. We found that males were more intensely parasitized than females, but only during the mating period. There was no difference in ectoparasite intensity between male and female juveniles at birth or at emergence, suggesting that ectoparasites do not exploit male red squirrels for longer-range natal dispersal. Male red squirrels in our population were slightly heavier than females, however we did not find any evidence that this dimorphism drives male-biased ectoparasitism. Finally, we could not detect an effect of ectoparasite removal on male body mass. Our results lend support to the hypothesis that ectoparasites exploit their male hosts for transmission and that male red squirrels are important for the transmission dynamics of ectoparasites in this population; however, the mechanisms (i.e., immunocompetence, testosterone) are not known.

16.
PLoS One ; 10(3): e0121646, 2015.
Article in English | MEDLINE | ID: mdl-25768437

ABSTRACT

We investigated the role of urban coyote feeding ecology in the transmission of Echinococcus multilocularis, the causative agent of Alveolar Echinococcosis in humans. As coyotes can play a main role in the maintenance of this zoonotic parasite within North American urban settings, such study can ultimately aid disease risk management. Between June 2012 and June 2013, we collected 251 coyote feces and conducted trapping of small mammals (n = 971) in five parks in the city of Calgary, Alberta, Canada. We investigated E. multilocularis epidemiology by assessing seasonal variations of coyote diet and the selective consumption of different rodent intermediate host species. Furthermore, accounting for small mammal digestibility and coyote defecation rates we estimated the number of small mammal preys ingested by coyote and consequently, coyote encounter rates with the parasite. Dominant food items included small mammals, fruit and vegetation, although hare and deer were seasonally relevant. The lowest frequency of occurrence per scat of small mammals was recorded in winter (39.4%), when consumption of deer was highest (36.4%). However, highest encounter rates (number of infected hosts predated/season) with E. multilocularis (95% CI: 1.0-22.4), combined with the lack of predation on non-competent small mammal species, suggest that winter is the critical season for transmission and control of this parasite. Within the small mammal assemblage, voles (Microtus pennsylvanicus and Myodes gapperi) were the selected preys of urban coyotes and likely played a key role for the maintenance of the urban sylvatic life-cycle of E. multilocularis in Calgary.


Subject(s)
Cities , Coyotes/parasitology , Echinococcus multilocularis/physiology , Feeding Behavior , Predatory Behavior , Animals , Diet , Seasons
17.
Int J Parasitol ; 44(7): 457-65, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24747533

ABSTRACT

Echinococcus multilocularis, the causative agent of human alveolar echinococcosis, has the potential to circulate in urban areas where wild host populations and humans coexist. The spatial and temporal distribution of infection in wild hosts locally affects the risk of transmission to humans. We investigated the spatial and temporal patterns of E. multilocularis infection in coyotes and rodent intermediate hosts within the city of Calgary, Canada, and the association between spatial variations in coyote infection and the relative composition of small mammal assemblages. Infection by E. multilocularis was examined in small mammals and coyote faeces collected monthly in five city parks from June 2012 to June 2013. Coyote faeces were analysed using a ZnCl(2) centrifugation and sedimentation protocol. Infection in intermediate hosts was assessed through lethal trapping and post-mortem analysis. Parasite eggs and metacestodes were morphologically identified and molecularly confirmed through species-specific PCR assays. Of 982 small mammals captured, infection was detected in 2/305 (0.66%) deer mice (Peromyscus maniculatus), 2/267 (0.75%) meadow voles (Microtus pennsylvanicus), and 1/71 (1.41%) southern red backed voles (Myodes gapperi). Overall faecal prevalence in coyotes was 21.42% (n = 385) and varied across sites, ranging from 5.34% to 61.48%. Differences in coyote faecal prevalence across sites were consistent with local variations in the relative abundance of intermediate hosts within the small mammal assemblages. Infections peaked in intermediate hosts during autumn (0.68%) and winter (3.33%), and in coyotes during spring (43.47%). Peaks of infections in coyote faeces up to 83.8% in autumn were detected in a hyper-endemic area. To the best of our knowledge, our findings represent the first evidence of a sylvatic life-cycle of E. multilocularis in a North American urban setting, and provide new insights into the complexity of the parasite transmission ecology.


Subject(s)
Cities , Coyotes , Echinococcosis/veterinary , Echinococcus multilocularis/isolation & purification , Rodentia , Alberta/epidemiology , Animals , Animals, Wild , Echinococcosis/epidemiology , Feces/parasitology , Humans , Zoonoses
18.
Parasitology ; 140(7): 803-13, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23425516

ABSTRACT

Many studies have identified various host behavioural and ecological traits that are associated with parasite infection, including host gregariousness. By use of meta-analyses, we investigated to what degree parasite prevalence, intensity and species richness are correlated with group size in gregarious species. We predicted that larger groups would have more parasites and higher parasite species richness. We analysed a total of 70 correlations on parasite prevalence, intensity and species richness across different host group sizes. Parasite intensity and prevalence both increased positively with group size, as expected. No significant relationships were found between host group size and parasite species richness, suggesting that larger groups do not harbour more rare or novel parasite species than smaller groups. We further predicted that the mobility of the host (mobile, sedentary) and the mode of parasite transmission (direct, indirect, mobile) would be important predictors of the effects of group sizes on parasite infection. It was found that group size was positively correlated with the prevalence and intensity of directly and indirectly transmitted parasites. However, a negative relationship was observed between group size and mobile parasite intensity, with larger groups having lower parasite intensities. Further, intensities of parasites did not increase with group size of mobile hosts, suggesting that host mobility may negate parasite infection risk. The implications for the evolution and maintenance of sociality in host species are discussed, and future research directions are highlighted.


Subject(s)
Parasites/growth & development , Parasitic Diseases/parasitology , Animals , Host-Parasite Interactions , Humans
19.
PLoS One ; 8(2): e55779, 2013.
Article in English | MEDLINE | ID: mdl-23409041

ABSTRACT

In order to evaluate potential reproductive costs associated with parasitism, we experimentally removed ectoparasites from reproductive female North American red squirrels (Tamiasciurus hudsonicus). Body mass and overwinter survival of mothers, days to juvenile emergence, juvenile survival from birth to emergence, and body mass of juveniles at emergence were all compared to those of untreated (control) animals. Ectoparasite removal did not affect the body mass of mothers throughout the lactation period and overwinter survival of mothers did not differ between treatments and controls. Likewise, there was no effect of treatment on the number of days to juvenile emergence. However, treated mothers raised offspring that were significantly heavier (11%) than controls at emergence. Juveniles from treated mothers were also 24% more likely to survive from birth to emergence. Our results indicate that ectoparasites impose costs on the reproductive success of female red squirrels and that ectoparasites have the potential to influence red squirrel life-histories and population dynamics.


Subject(s)
Reproduction , Sciuridae/parasitology , Survival , Animals , Body Weight , Female , Male , Siphonaptera
20.
PLoS One ; 8(1): e52987, 2013.
Article in English | MEDLINE | ID: mdl-23326370

ABSTRACT

Sexual segregation seems to be common in bottlenose dolphins, whereby males and females live in different pods that mix mainly for mating. Male dolphins often use aggressive behaviour to mate with females, while females with calves may have different activity and dietary requirements to males and different susceptibility to predation. We investigated the degree of spatial and social sexual segregation in Indo-Pacific bottlenose dolphins (Tursiops aduncus) in a subtropical estuary in Australia. Based on surveys completed over three years, dolphin groups were mostly mixed-sex or female. Mixed-sex groups were found in larger groups in mostly deeper water, whereas, female groups were foraging across all water depths in smaller groups. Aggressive coercive behaviour by males towards females was high, occurring mainly in deeper water, at higher tides, and outside the breeding season. Habitat use by female dolphin groups suggests that shallow tributaries may provide a sanctuary from aggressive males, access to suitable prey items and density for mothers and their calves, or a combination of these factors.


Subject(s)
Bottle-Nosed Dolphin/physiology , Ecosystem , Estuaries , Social Behavior , Animals , Female , Geography , Indian Ocean , Male , New South Wales , Reproduction/physiology , Seasons , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...