Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(7): 163, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896149

ABSTRACT

Barley yellow dwarf (BYD) is one of the economically most important virus diseases of cereals worldwide, causing yield losses up to 80%. The means to control BYD are limited, and the use of genetically resistant cultivars is the most economical and environmentally friendly approach. The objectives of this study were i) to identify the causative gene for BYD virus (BYDV)-PAV resistance in maize, ii) to identify single nucleotide polymorphisms and/or structural variations in the gene sequences, which may cause differing susceptibilities to BYDV-PAV of maize inbreds, and iii) to characterize the effect of BYDV-PAV infection on gene expression of susceptible, tolerant, and resistant maize inbreds. Using two biparental mapping populations, we could reduce a previously published quantitative trait locus for BYDV-PAV resistance in maize to ~ 0.3 Mbp, comprising nine genes. Association mapping and gene expression analysis further reduced the number of candidate genes for BYDV-PAV resistance in maize to two: Zm00001eb428010 and Zm00001eb428020. The predicted functions of these genes suggest that they confer BYDV-PAV resistance either via interfering with virus replication or by inducing reactive oxygen species signaling. The gene sequence of Zm00001eb428010 is affected by a 54 bp deletion in the 5`-UTR and a protein altering variant in BYDV-PAV-resistant maize inbreds but not in BYDV-PAV-susceptible and -tolerant inbreds. This finding suggests that altered abundance and/or properties of the proteins encoded by Zm00001eb428010 may lead to BYDV-PAV resistance.


Subject(s)
Chromosome Mapping , Disease Resistance , Plant Diseases , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/virology , Disease Resistance/genetics , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Genes, Plant , Luteovirus , Phenotype
2.
Front Plant Sci ; 13: 828639, 2022.
Article in English | MEDLINE | ID: mdl-35498699

ABSTRACT

Wheat dwarf virus (WDV) is transmitted by the leafhopper Psammotettix alienus. As a major pathogen in wheat and other cereals, WDV causes high yield losses in many European countries. Due to climate change, insect-transmitted viruses will become more important and the restrictions in the use of insecticides efficient against P. alienus renders growing of WDV resistant/tolerant varieties the only effective strategy to control WDV. So far, there is little information about the possible sources of resistance and no known information about the genome regions responsible for the resistance. In a screening for WDV resistance using artificial inoculation in gauze houses, a panel of 500 wheat accessions including cultivars, gene bank accessions, and wild relatives of wheat was phenotyped for virus titer, infection rate, as well as plant height and yield parameters relative to healthy controls of the same genotype. Additionally, 85 T. aestivum-Ae. tauschii intogression lines were tested for WDV resistance in the greenhouse. A subset of 250 hexaploid wheat accessions was genotyped with the 15k iSelect SNP Chip. By genome-wide association study (GWAS), the quantitative trait loci (QTL) for partial WDV resistance were identified. Within these studies, one cultivar was identified showing an average infection rate of only 5.7%. By analyzing single seed descent (SSD) and doubled haploid (DH) populations comprising 153 and 314 individuals for WDV resistance and by genotyping these with the 25k iSelect SNP Chip, QTL for yield per plant, thousand-grain weight, and relative virus titer were validated on chromosomes 1B, 2B, 3B, 4B, 4A, 5A, 6A, and 7A. These results will be the basis for marker-assisted selection for WDV resistance to replacing the laborious, time-consuming, and technically challenging phenotyping with WDV bearing leafhoppers.

SELECTION OF CITATIONS
SEARCH DETAIL
...