Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28330953

ABSTRACT

Extreme diets consisting of either high fat (HF) or high sucrose (HS) may lead to insulin resistance in skeletal muscle, often associated with mitochondrial dysfunction. However, it is not known if these diets alter normal interactions of pyruvate and fatty acid oxidation at the level of the mitochondria. Here, we report that rat muscle mitochondria does show the normal Randle-type fat-carbohydrate interaction seen in vivo. The mechanism behind this metabolic flexibility at the level of the isolated mitochondria is a regulation of the flux-ratio: pyruvate dehydrogenase (PDH)/ß-oxidation to suit the actual substrate availability, with the PDH flux as the major point of regulation. We further report that this regulatory mechanism of carbohydrate-fat metabolic interaction surprisingly is lost in mitochondria obtained from animals exposed for 12 weeks to a HF- or a HS diet as compared to rats given a normal chow diet. The mechanism seems to be a loss of the PDH flux decrease seen in controls, when fatty acid is supplied as substrate in addition to pyruvate, and vice versa for the supply of pyruvate as substrate to mitochondria oxidizing fatty acid. Finally, we report that the calculated TCA flux in the isolated mitochondria under these circumstances shows a significant reduction (~50%) after the HF diet and an even larger reduction (~75%) after the HS diet, compared with the chow group. Thus, it appears that obesogenic diets as those applied here have major influence on key metabolic performance of skeletal muscle mitochondria.


Subject(s)
Dietary Fats/metabolism , Dietary Sucrose/metabolism , Fatty Acids/metabolism , Insulin Resistance/physiology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Animals , Diet, High-Fat , Oxidation-Reduction , Pyruvate Dehydrogenase Complex/metabolism , Rats , Rats, Wistar
2.
Am J Physiol Endocrinol Metab ; 303(4): E515-23, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22713504

ABSTRACT

Impaired mitochondrial function is implicated in the development of type 2 diabetes mellitus (T2DM). This was investigated in mitochondria from skeletal muscle and liver of the Goto-Kakizaki (GK) rat, which spontaneously develops T2DM with age. The early and the manifest stage of T2DM was studied in 6- and 16-wk-old GK rats, respectively. In GK16 compared with GK6 animals, a decrease in state 3 respiration with palmitoyl carnitine (PC) as substrate was observed in muscle. Yet an increase was seen in liver. To test the complex II contribution to the state 3 respiration, succinate was added together with PC. In liver mitochondria, this resulted in an ∼50% smaller respiratory increase in the GK6 group compared with control and no respiratory increase at all in the GK16 animals. Yet no difference between groups was seen in muscle mitochondria. RCR and P/O ratio was increased (P < 0.05) in liver but unchanged in muscle in both GK groups. We observed increased lipid peroxidation and decreased Akt phosphorylation in liver with the progression of T2DM but no change in muscle. We conclude that, during the progression of T2DM in GK rats, liver mitochondria are affected earlier and/or more severely than muscle mitochondria. Succinate dehydrogenase flux in the presence of fatty acids was reduced severely in liver but not in muscle mitochondria during manifest T2DM. The observations support the notion that T2DM pathogenesis is initiated in the liver and that only later are muscle mitochondria affected.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Electron Transport Complex II/metabolism , Mitochondria, Liver/enzymology , Mitochondria, Muscle/enzymology , Animals , Diabetes Mellitus, Type 2/enzymology , Disease Progression , Lipid Peroxidation , Male , Oxygen Consumption , Palmitoylcarnitine/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Severity of Illness Index , Succinate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...