Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 15(9): 20, 2015.
Article in English | MEDLINE | ID: mdl-26230982

ABSTRACT

Understanding the depth ordering of surfaces in the natural world is one of the most fundamental operations of the primate visual system. Surfaces that undergo accretion or deletion (AD) of texture are always perceived to behind an adjacent surface. An updated ForMotionOcclusion model (Barnes & Mingolla, 2013) includes two streams for computing motion signals and boundary signals. The two streams generate depth percepts such that AD signals together with boundary signals generate a farther depth on the occluded side of the boundary. The model fits the classical data (Kaplan, 1969) as well as the observation that moving surfaces tend to appear closer in depth (Royden, Baker, & Allman, 1988), for both binary and grayscale stimuli. The recent "Moonwalk illusion" described by Kromrey, Bart, and Hegdé (2011) upends the classical view that the surface undergoing AD always becomes the background. Here the surface that undergoes AD appears to be in front of the surrounding surface-a result of the random flickering noise in the surround. As an additional challenge, we developed an AD display with dynamic depth ordering. A new texture version of the Michotte rabbit hole phenomenon (Michotte, Thinès, & Crabbé, 1964/1991) generates depth that changes in part of the display area. Because the ForMotionOcclusion model separates the computation of boundaries from the computation of AD signals, it is able to explain the counterintuitive Moonwalk stimulus. We show simulations that explain the workings of the model and how the model explains the Moonwalk and textured Michotte phenomena.


Subject(s)
Computer Simulation , Depth Perception/physiology , Form Perception/physiology , Models, Theoretical , Motion Perception/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...