Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(10): 10I115, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399941

ABSTRACT

Triplet sets of replaceable graphite rod collector probes (CPs), each with collection surfaces on opposing faces and oriented normal to the magnetic field, were inserted at the outboard mid-plane of DIII-D to study divertor tungsten (W) transport in the Scrape-Off Layer (SOL). Each CP collects particles along field lines with different parallel sampling lengths (determined by the rod diameters and SOL transport) giving radial profiles from the main wall inward to R-R sep ∼ 6 cm. The CPs were deployed in a first-of-a-kind experiment using two toroidal rings of distinguishable isotopically enriched, W-coated divertor tiles installed at 2 poloidal locations in the divertor. Post-mortem Rutherford backscatter spectrometry of the surface of the CPs provided areal density profiles of elemental W coverage. Higher W content was measured on the probe side facing along the field lines toward the inner target indicating higher concentration of W in the plasma upstream of the CP, even though the W-coated rings were in the outer target region of the divertor. Inductively coupled plasma mass spectroscopy validates the isotopic tracer technique through analysis of CPs exposed during L-mode discharges with the outer strike point on the isotopically enriched W coated-tile ring. The contribution from each divertor ring of W to the deposition profiles found on the mid-plane collector probes was able to be de-convoluted using a stable isotope mixing model. The results provided quantitative information on the W source and transport from specific poloidal locations within the lower divertor region.

2.
Rev Sci Instrum ; 88(3): 033505, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372379

ABSTRACT

We present a method to calculate the ion saturation current, Isat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of Isat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating Te. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.

3.
Phys Rev Lett ; 106(11): 115001, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21469867

ABSTRACT

The first measurements of turbulent stresses and flows inside the separatrix of a tokamak H-mode plasma are reported, using a reciprocating multitip Langmuir probe at the DIII-D tokamak. A strong co-current rotation layer at the separatrix is found to precede intrinsic rotation development in the core. The measured fluid turbulent stresses transport toroidal momentum outward against the velocity gradient and thus try to sustain the edge layer. However, large kinetic stresses must exist to explain the net inward momentum transport leading to co-current core plasma rotation. The importance of such kinetic stresses is corroborated by the success of a simple orbit loss model, representing a purely kinetic mechanism, in the prediction of features of the edge corotation layer.

4.
Rev Sci Instrum ; 80(4): 043501, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19405654

ABSTRACT

A probe has been designed, constructed, and successfully used to inject methane into the DIII-D lower divertor in a manner imitating natural release by chemical erosion. This porous plug injector (PPI) probe consists of a self-contained gas reservoir with an integrated pressure gauge and a 3 cm diameter porous surface through which gas is injected into the lower divertor of the tokamak. The probe is positioned flush with the divertor target surface by means of the divertor materials evaluation system. Two gas delivery systems were developed: in the first, gas flow is regulated by a remotely controlled microvalve and in the second by a fixed micro-orifice flow restrictor. Because of the large area of the porous surface through which gas is admitted, the injected hydrocarbon molecules see a local carbon surface (>90% carbon) similar to that seen by hydrocarbons being emitted by chemical sputtering from surrounding carbon tiles. The distributed gas source also reduces the disturbance to the local plasma while providing sufficient signal for spectroscopic detection. In situ spectroscopic measurements with the PPI in DIII-D allow the direct calibration of response for measured plasma conditions from a known influx of gas.

5.
Rev Sci Instrum ; 79(10): 10F303, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044616

ABSTRACT

Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

6.
Phys Rev Lett ; 92(23): 235003, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15245164

ABSTRACT

A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

7.
Phys Rev Lett ; 88(25 Pt 1): 255002, 2002 Jun 24.
Article in English | MEDLINE | ID: mdl-12097092

ABSTRACT

The transition from the low to the high mode of plasma confinement ( L-H transition) is studied in the DIII-D by an experimental technique which allows an arbitrarily slow transition. During an initial transition, periodic turbulent instability bursts are observed near the separatrix which inhibit the full transition. These bursts are damped by self-generated shear flows, and a predator-prey-type relationship is shown to give a good description of the data. As the neutral-beam power is raised, the oscillations change to type III edge localized modes. Another transition then leads to a quiet H mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...