Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 68(11): 2330-6, 2013.
Article in English | MEDLINE | ID: mdl-24334879

ABSTRACT

Laboratory experiments were conducted to investigate the kinetics of aerobic chemical and biological oxidation of selected odorous volatile sulfur compounds (VSCs) by wastewater and biofilm from sewers. The VSCs included methyl mercaptan (MeSH), ethyl mercaptan (EtSH), dimethyl sulfide (DMS) and total inorganic sulfide, which have all been reported as the main constituents of foul sewer gas. Samples of wastewater and biofilm for the experiments were obtained from two locations that differed significantly with respect to the occurrence of VSCs. One location represented an odor hot-spot downstream of a force main and the other was a gravity sewer transporting young aerobic wastewater. The kinetics of VSC oxidation for both wastewater and suspended biofilm samples followed a first-order rate equation. The average values of the reaction rate constants demonstrated the following order of reactivity: total inorganic sulfide > EtSH ≥ MeSH >> DMS. Except for total inorganic sulfide oxidation in wastewater, kinetic parameters for each VSC were of similar magnitude for the two locations. In the wastewater from the odor hot-spot, sulfide inorganic oxidation rates were approximately 12 times faster than in the aerobic wastewater.


Subject(s)
Sulfur Compounds/chemistry , Volatile Organic Compounds/chemistry , Wastewater/chemistry , Biofilms , Kinetics , Odorants , Oxidation-Reduction
2.
Water Sci Technol ; 67(8): 1809-15, 2013.
Article in English | MEDLINE | ID: mdl-23579837

ABSTRACT

A method for on-line measurement of the organic carbon oxidation level (OXC) during aerobic heterotrophic respiration in domestic wastewater was developed and tested. The method is based on batch incubation of sewer wastewater in an intermittently aerated respirometric reactor. Between aeration cycles, measured pH, dissolved oxygen (DO) and dissolved carbon dioxide (CO2) were used to calculate electron flow accepted by DO and the resulting production of dissolved inorganic carbon (DIC). The CO2 production was measured using a novel fiber-optic sensor based on luminescence quenching. The method was tested on domestic wastewater with a relatively high pH and alkalinity. From the DO and DIC measurements, it was possible to evaluate substrate oxidation levels with a temporal resolution of less than an hour. Addition of organic substrates during the experiments confirmed the method's applicability. The substrates tested included ethanol (OXC = -2), glucose (OXC = 0) and oxalic acid (OXC = 3).


Subject(s)
Organic Chemicals/chemistry , Wastewater/analysis , Aerobiosis , Cell Respiration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...