Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(17): eadg2655, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37126557

ABSTRACT

Higher-order optical harmonics entered the realm of nanostructured solids being observed recently in optical gratings and metasurfaces with a subwavelength thickness. Structuring materials at the subwavelength scale allows us toresonantly enhance the efficiency of nonlinear processes and reduce the size of high-harmonic sources. We report the observation of up to a seventh harmonic generated from a single subwavelength resonator made of AlGaAs material. This process is enabled by careful engineering of the resonator geometry for supporting an optical mode associated with a quasi-bound state in the continuum in the mid-infrared spectral range at around λ = 3.7 µm pump wavelength. The resonator volume measures ~0.1 λ3. The resonant modes are excited with an azimuthally polarized tightly focused beam. We evaluate the contributions of perturbative and nonperturbative nonlinearities to the harmonic generation process. Our work proves the possibility to miniaturize solid-state sources of high harmonics to the subwavelength volumes.

2.
Adv Sci (Weinh) ; 9(21): e2200761, 2022 07.
Article in English | MEDLINE | ID: mdl-35618474

ABSTRACT

The capacity to synthesize and design highly intricated nanoscale objects of different sizes, surfaces, and shapes dramatically conditions the development of multifunctional nanomaterials. Ultrafast laser technology holds great promise as a contactless process able to rationally and rapidly manufacture complex nanostructures bringing innovative surface functions. The most critical challenge in controlling the growth of laser-induced structures below the light diffraction limit is the absence of external order associated to the inherent local interaction due to the self-organizing nature of the phenomenon. Here high aspect-ratio nanopatterns driven by near-field surface coupling and architectured by timely-controlled polarization pulse shaping are reported. Electromagnetic coupled with hydrodynamic simulations reveal why this unique optical manipulation allows peaks generation by inhomogeneous local absorption sustained by nanoscale convection. The obtained high aspect-ratio surface nanotopography is expected to prevent bacterial proliferation, and have great potential for catalysis, vacuum to deep UV photonics and sensing.


Subject(s)
Nanostructures , Catalysis , Lasers , Light , Nanostructures/chemistry , Optics and Photonics
3.
Sci Rep ; 12(1): 2074, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35136107

ABSTRACT

A highly efficient drilling process is found in non-transparent metallic materials enabled by the use of non-diffractive ultrafast Bessel beams. Applied for deep drilling through a 200 µm-thick steel plate, the Bessel beam demonstrates twofold higher drilling efficiency compared to a Gaussian beam of similar fluence and spot size. Notwithstanding that surface ablation occurs with the same efficiency for both beams, the drilling booster results from a self-replication and reconstruction of the beam along the axis, driven by internal reflections within the crater at quasi-grazing incidence, bypassing potential obstacles. The mechanism is the consequence of an oblique wavevectors geometry with low angular dispersion and generates a propagation length beyond the projection range allowed by the geometry of the channel. With only the main lobe being selected by the channel entrance, side-wall reflection determines the refolding of the lobe on the axis, enhancing and replicating the beam multiple times inside the channel. The process is critically assisted by the reduction of particle shielding enabled by the intrinsic self-healing of the Bessel beam. Thus the drilling process is sustained in a way which is uniquely different from that of the conventional Gaussian beam, the latter being damped within its Rayleigh range. These mechanisms are supported and quantified by Finite Difference Time Domain calculations of the beam propagation. The results show key advantages for the quest towards efficient laser drilling and fabrication processes.

4.
Nano Lett ; 21(20): 8848-8855, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34633185

ABSTRACT

High-index dielectric metasurfaces can support sharp optical resonances enabled by the physics of bound states in the continuum (BICs) often manifested in experiments as quasi-BIC resonances. They provide a way to enhance light-matter interaction at the subwavelength scale bringing novel opportunities for nonlinear nanophotonics. Strong narrow-band field enhancement in quasi-BIC metasurfaces leads to an extreme sensitivity to a change of the refractive index that may limit nonlinear functionalities for the pump intensities beyond the perturbative regime. Here we study ultrafast self-action effects observed in quasi-BIC silicon metasurfaces and demonstrate how they alter the power dependence of the third-harmonic generation efficiency. We study experimentally a transition from the subcubic to supercubic regimes for the generated third-harmonic power driven by a blue-shift of the quasi-BIC in the multiphoton absorption regime. Our results suggest a way to implement ultrafast nonlinear dynamics in high-index resonant dielectric metasurfaces for nonlinear meta-optics beyond the perturbative regime.

5.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923518

ABSTRACT

A laser-irradiated surface is the paradigm of a self-organizing system, as coherent, aligned, chaotic, and complex patterns emerge at the microscale and even the nanoscale. A spectacular manifestation of dissipative structures consists of different types of randomly and periodically distributed nanostructures that arise from a homogeneous metal surface. The noninstantaneous response of the material reorganizes local surface topography down to tens of nanometers scale modifying long-range surface morphology on the impact scale. Under ultrafast laser irradiation with a regulated energy dose, the formation of nanopeaks, nanobumps, nanohumps and nanocavities patterns with 20-80 nm transverse size unit and up to 100 nm height are reported. We show that the use of crossed-polarized double laser pulse adds an extra dimension to the nanostructuring process as laser energy dose and multi-pulse feedback tune the energy gradient distribution, crossing critical values for surface self-organization regimes. The tiny dimensions of complex patterns are defined by the competition between the evolution of transient liquid structures generated in a cavitation process and the rapid resolidification of the surface region. Strongly influencing the light coupling, we reveal that initial surface roughness and type of roughness both play a crucial role in controlling the transient emergence of nanostructures during laser irradiation.

6.
Nanoscale ; 12(12): 6609-6616, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32163060

ABSTRACT

Coupling ultrafast light irradiation to surface nanoreliefs leads to periodic patterns, achieving record processing scales down to tens of nanometers. Driven by near-field interactions, the promising potential of the spontaneous pattern formation relies on the scaling up of one-step manufacturing processes. Here, we report the self-assembly of unconventional arrays of nanocavities of 20 nm diameter with a periodicity down to 60 nm upon ultrafast laser irradiation of a nickel surface. In stark contrast to laser-induced surface ripples, which are stochastic and suffer from a lack of regularity, the 2D patterns present an unprecedented uniformity on extreme scales. The onset of nanocavity arrays ordered in a honeycomb lattice is achieved by overcoming the anisotropic polarization response of the surface by a delayed action of cross-polarized laser pulses. The origin of this self-arrangement is identified as a manifestation of Marangoni convection instability in a nanoscale melt layer, destabilized by the laser-induced rarefaction wave.

7.
Materials (Basel) ; 11(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518060

ABSTRACT

A novel additive surface structuring process is devised, which involves localized, intense femtosecond laser irradiation. The irradiation induces a phase explosion of the material being irradiated, and a subsequent ejection of the ablative species that are used as additive building blocks. The ejected species are deposited and accumulated in the vicinity of the ablation site. This redistribution of the material can be repeated and controlled by raster scanning and multiple pulse irradiation. The deposition and accumulation cause the formation of µm-scale three-dimensional structures that surpass the initial surface level. The above-mentioned ablation, deposition, and accumulation all together constitute the proposed additive surface structuring process. In addition, the geometry of the three-dimensional structures can be further modified, if desirable, by a subsequent substractive ablation process. Microstructural analysis reveals a quasi-seamless conjugation between the surface where the structures grow and the structures additively grown by this method, and hence indicates the mechanic robustness of these structures. As a proof of concept, a sub-mm sized re-entrant structure and pillars are fabricated on aluminum substrate by this method. Single units as well as arrayed structures with arbitrary pattern lattice geometry are easily implemented in this additive surface structuring scheme. Engineered surface with desired functionalities can be realized by using this means, i.e., a surface with arrayed pillars being rendered with superhydrophobicity.

8.
Phys Chem Chem Phys ; 20(8): 5887-5899, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29417105

ABSTRACT

Ultrashort laser nanostructuring of glasses has attracted increasing interest over the last few decades due to numerous applications in three-dimensional nanofabrication, optical data storage, and development of nanofluidic and polarization-sensitive devices. The knowledge of the influence of laser parameters on the nanostructure formation/erasure is still lacking. In this work, laser-induced modifications and mechanisms of glass decomposition in fused silica are numerically investigated. Cavitation is shown to be the primary mechanism responsible for void formation at the center of the heat-affected zone. Multipulse accumulation processes providing higher local temperatures/pressures lead to the rapid formation of cavitation nanopores, lying in the origin of self-organized nanogratings. Femtosecond laser-interaction threshold conditions required for nanograting formation/erasure are defined in agreement with the available experimental findings. For this, a detailed multi-physical modeling is performed taking into account laser pulse propagation in nonlinear and dispersive media, electronic relaxation/excitation processes, electron-ion heat transfer and thermal diffusion. Based on the calculated temperatures, classical nucleation theory, viscoelastic energy conservation law and the Rayleigh-Plesset model, threshold conditions leading to nanopore formation, stability and growth are investigated as a function of laser energy, pulse duration and repetition rate. The performed numerical study not only contributes to a better fundamental understanding of ultrashort laser-induced modifications on the nanoscale but should also be helpful in defining the optimal laser parameters for nanostructuring or avoiding nanostructure organization and in developing techniques for nanograting rewriting.

9.
Sci Rep ; 7(1): 12306, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951573

ABSTRACT

Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...