Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ICES J Mar Sci ; 75(3): 1029-1041, 2018 May.
Article in English | MEDLINE | ID: mdl-29881244

ABSTRACT

Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200-300-m depth range. Here we outline potential criteria for a climate change-tolerant fishery by examining the distribution, life-history attributes, and marketable qualities of S. fragilis in southern California. We provide evidence of seasonality of gonad production and demonstrate that peak gonad production occurs in the winter season. S. fragilis likely spawns in the spring season as evidenced by consistent minimum gonad indices in the spring/summer seasons across 4 years of sampling (2012-2016). The resiliency of S. fragilis to predicted future increases in acidity and decreases in oxygen was supported by high species abundance, albeit reduced relative growth rate estimates at water depths (485-510 m) subject to low oxygen (11.7-16.9 µmol kg-1) and pHTotal (<7.44), which may provide assurances to stakeholders and managers regarding the suitability of this species for commercial exploitation. Some food quality properties of the S. fragilis roe (e.g. colour, texture) were comparable with those of the commercially exploited shallow-water red sea urchin (Mesocentrotus franciscanus), while other qualities (e.g. 80% reduced gonad size by weight) limit the potential future marketability of S. fragilis. This case study highlights the potential future challenges and drawbacks of climate-tolerant fishery development in an attempt to inform future urchin fishery stakeholders.

2.
PLoS One ; 13(6): e0196864, 2018.
Article in English | MEDLINE | ID: mdl-29874229

ABSTRACT

Understanding spatio-temporal variability in the demography of harvested species is essential to improve sustainability, especially if there is large geographic variation in demography. Reproductive patterns commonly vary spatially, which is particularly important for management of "roe"-based fisheries, since profits depend on both the number and reproductive condition of individuals. The red sea urchin, Mesocentrotus franciscanus, is harvested in California for its roe (gonad), which is sold to domestic and international sushi markets. The primary driver of price within this multi-million-dollar industry is gonad quality. A relatively simple measure of the fraction of the body mass that is gonad, the gonadosomatic index (GSI), provides important insight into the ecological and environmental factors associated with variability in reproductive quality, and hence value within the industry. We identified the seasonality of the reproductive cycle and determined whether it varied within a heavily fished region. We found that fishermen were predictable both temporally and spatially in collecting urchins according to the reproductive dynamics of urchins. We demonstrated the use of red sea urchin GSI as a simple, quantitative tool to predict quality, effort, landings, price, and value of the fishery. We found that current management is not effectively realizing some objectives for the southern California fishery, since the reproductive cycle does not match the cycle in northern California, where these management guidelines were originally shaped. Although regulations may not be meeting initial management goals, the scheme may in fact provide conservation benefits by curtailing effort during part of the high-quality fishing season right before spawning.


Subject(s)
Models, Biological , Sea Urchins/physiology , Animals , Female , Indian Ocean , Male , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL