Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4851, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381047

ABSTRACT

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Subject(s)
Chemokine CXCL10/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , 3' Untranslated Regions , Chemokine CXCL10/genetics , DEAD Box Protein 58/metabolism , ELAV-Like Protein 1/metabolism , Extracellular Vesicles/metabolism , Host-Parasite Interactions , Humans , Life Cycle Stages , Malaria, Falciparum/immunology , Monocytes/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protein Biosynthesis , RNA, Protozoan/metabolism , Receptors, Immunologic/metabolism , Ribosomes/metabolism , THP-1 Cells
2.
Nat Commun ; 12(1): 1172, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608523

ABSTRACT

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Subject(s)
Biological Transport/physiology , Erythrocytes/metabolism , Host-Parasite Interactions/physiology , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Proteasome Endopeptidase Complex/metabolism , Cytoskeleton/metabolism , Erythrocytes/cytology , Erythrocytes/parasitology , Humans , Malaria, Falciparum/parasitology , Membrane Proteins/metabolism , Phosphorylation , Plasmodium falciparum/growth & development , Proteomics
3.
Front Immunol ; 9: 1011, 2018.
Article in English | MEDLINE | ID: mdl-29881375

ABSTRACT

Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites (Plasmodium falciparum, Pf), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf-DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.


Subject(s)
Extracellular Vesicles/metabolism , Flow Cytometry , Interferon Regulatory Factor-3/metabolism , Monocytes/metabolism , Plasmodium falciparum , Biological Transport , DNA, Protozoan/metabolism , Host-Pathogen Interactions , Humans , Kinetics , Molecular Imaging , THP-1 Cells
4.
Mol Biol Cell ; 29(16): 2005-2011, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29927358

ABSTRACT

A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.


Subject(s)
Acoustics , Erythrocytes/physiology , Spectrum Analysis/methods , Biomechanical Phenomena , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...