Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688902

ABSTRACT

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Mas , Severe Combined Immunodeficiency , Humans , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Genetic Therapy/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics , Genetic Vectors/genetics , Agammaglobulinemia/therapy , Agammaglobulinemia/genetics , Male , Retroviridae/genetics
2.
Blood ; 141(19): 2316-2329, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36790505

ABSTRACT

Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, ß, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells.


Subject(s)
Genetic Therapy , Genetic Vectors , Mice , Animals , Genetic Vectors/genetics , Transgenes , Plasmids , Genetic Therapy/methods , Receptors, Antigen, T-Cell/genetics , Dependovirus/genetics , Virus Integration
3.
Nat Commun ; 13(1): 3712, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764632

ABSTRACT

High transduction rates of viral vectors in gene therapies (GT) and experimental hematopoiesis ensure a high frequency of gene delivery, although multiple integration events can occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations between repeated measurements of IS abundances to estimate their mutual similarity and identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the performance, robustness and specificity of our methodology using clonal simulations. The reconstruction methods, implemented and provided as an R-package, are further applied to experimental clonal mixes and preclinical models of hematopoietic GT. Our results demonstrate that clonal reconstruction from IS data allows to overcome systematic biases in the clonal quantification as an essential prerequisite for the assessment of safety and long-term efficacy of GT involving integrative vectors.


Subject(s)
Genetic Therapy , Genetic Vectors , Clone Cells , Gene Transfer Techniques , Genetic Vectors/genetics
4.
Nat Med ; 27(8): 1458-1470, 2021 08.
Article in English | MEDLINE | ID: mdl-34140705

ABSTRACT

Gene therapy (GT) has rapidly attracted renewed interest as a treatment for otherwise incurable diseases, with several GT products already on the market and many more entering clinical testing for selected indications. Clonal tracking techniques based on vector integration enable monitoring of the fate of engineered cells in the blood of patients receiving GT and allow assessment of the safety and efficacy of these procedures. However, owing to the limited number of cells that can be tested and the impracticality of studying cells residing in peripheral organs without performing invasive biopsies, this approach provides only a partial snapshot of the clonal repertoire and dynamics of genetically modified cells and reduces the predictive power as a safety readout. In this study, we developed liquid biopsy integration site sequencing, or LiBIS-seq, a polymerase chain reaction technique optimized to quantitatively retrieve vector integration sites from cell-free DNA released into the bloodstream by dying cells residing in several tissues. This approach enabled longitudinal monitoring of in vivo liver-directed GT and clonal tracking in patients receiving hematopoietic stem cell GT, improving our understanding of the clonal composition and turnover of genetically modified cells in solid tissues and, in contrast to conventional analyses based only on circulating blood cells, enabling earlier detection of vector-marked clones that are aberrantly expanding in peripheral tissues.


Subject(s)
Cell-Free Nucleic Acids/genetics , Genetic Vectors/genetics , Cell-Free Nucleic Acids/adverse effects , Genetic Therapy , Humans , Leukemia/genetics , Leukemia/therapy , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/therapy , Lymphoma/genetics , Lymphoma/therapy
5.
Nat Commun ; 8(1): 498, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887441

ABSTRACT

HIV-1 insertions targeting BACH2 or MLK2 are enriched and persist for decades in hematopoietic cells from patients under combination antiretroviral therapy. However, it is unclear how these insertions provide such selective advantage to infected cell clones. Here, we show that in 30/87 (34%) patients under combination antiretroviral therapy, BACH2, and STAT5B are activated by insertions triggering the formation of mRNAs that contain viral sequences fused by splicing to their first protein-coding exon. These chimeric mRNAs, predicted to express full-length proteins, are enriched in T regulatory and T central memory cells, but not in other T lymphocyte subsets or monocytes. Overexpression of BACH2 or STAT5B in primary T regulatory cells increases their proliferation and survival without compromising their function. Hence, we provide evidence that HIV-1-mediated insertional activation of BACH2 and STAT5B favor the persistence of a viral reservoir in T regulatory cells in patients under combination antiretroviral therapy.HIV insertions in hematopoietic cells are enriched in BACH2 or MLK2 genes, but the selective advantages conferred are unknown. Here, the authors show that BACH2 and additionally STAT5B are activated by viral insertions, generating chimeric mRNAs specifically enriched in T regulatory cells favoring their persistence.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , HIV Infections/genetics , HIV-1/genetics , STAT5 Transcription Factor/genetics , T-Lymphocytes, Regulatory/metabolism , Anti-HIV Agents/therapeutic use , Cells, Cultured , Disease Reservoirs/virology , Gene Expression Regulation , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/physiology , Humans , Mutagenesis, Insertional , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/virology , Virus Integration
6.
J Clin Invest ; 122(5): 1667-76, 2012 May.
Article in English | MEDLINE | ID: mdl-22523064

ABSTRACT

Gamma-retroviral/lentiviral vectors (γRV/LV) with self-inactivating (SIN) long terminal repeats (LTRs) and internal moderate cellular promoters pose a reduced risk of insertional mutagenesis when compared with vectors with active LTRs. Yet, in a recent LV-based clinical trial for ß-thalassemia, vector integration within the HMGA2 gene induced the formation of an aberrantly spliced mRNA form that appeared to cause clonal dominance. Using a method that we developed, cDNA linear amplification-mediated PCR, in combination with high-throughput sequencing, we conducted a whole transcriptome analysis of chimeric LV-cellular fusion transcripts in transduced human lymphoblastoid cells and primary hematopoietic stem/progenitor cells. We observed a surprising abundance of read-through transcription originating outside and inside the provirus and identified the vector sequences contributing to the aberrant splicing process. We found that SIN LV has a sharply reduced propensity to engage in aberrant splicing compared with that of vectors carrying active LTRs. Moreover, by recoding the identified vector splice sites, we reduced residual read-through transcription and demonstrated an effective strategy for improving vectors. Characterization of the mechanisms and genetic features underlying vector-induced aberrant splicing will enable the generation of safer vectors, with low impact on the cellular transcriptome.


Subject(s)
Alternative Splicing , Lentivirus Infections/genetics , Lentivirus/physiology , Protein Isoforms/genetics , Transcriptome , Virus Integration , Base Sequence , Cells, Cultured , Gene Expression Profiling , Genes, Essential , Hematopoietic Stem Cells/virology , Humans , Lentivirus/genetics , Mutagenesis, Insertional , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Polymerase Chain Reaction/methods , Primary Cell Culture , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Terminal Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...