Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 14(10): 2959-67, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16101766

ABSTRACT

Genetic analyses on noninvasively collected samples have revolutionized how populations are monitored. Most noninvasive monitoring studies have used hair or scat for individual identification of elusive mammals, but here we utilize naturally shed feathers. The Eastern imperial eagle (EIE) is a species of conservation concern throughout Central Asia and, like most raptors, EIEs are inherently challenging to study because adults are difficult to capture and band using conventional techniques. Over 6 years, we noninvasively collected hundreds of adult feathers and directly sampled EIE chicks at a national nature reserve in Kazakhstan. All samples were genetically sexed and genotyped at a suite of microsatellite loci. Genetically profiled adult feathers identified and monitored the presence of individual eagles over time, enabling us to address a variety of issues related to the biology, demography, and conservation of EIEs. Specifically, we characterized (i) the genetic mating system, (ii) relatedness among mated pairs, (iii) chick sex ratios, and (iv) annual turnover in an adult breeding population. We show that EIEs are genetically monogamous and furthermore, there is no apparent relatedness-based system of mate choice (e.g. inbreeding avoidance). Results indicate that annual adult EIE survivorship (84%) is lower than expected for a long-lived raptor, but initial analyses suggest the current reproductive rate at our study site is sufficient to maintain a stable breeding population. The pristine habitat at our study site supports an EIE population that is probably the most demographically robust in the world; thus, our results caution that populations in marginal habitats may not be self-sustaining.


Subject(s)
Eagles/genetics , Feathers/chemistry , Animals , Conservation of Natural Resources , DNA/chemistry , DNA/genetics , Environmental Monitoring/methods , Female , Kazakhstan , Male , Microsatellite Repeats/genetics , Nesting Behavior , Parents , Polymerase Chain Reaction/veterinary , Sex Ratio , Sexual Behavior, Animal
2.
Genetics ; 165(2): 613-21, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14573474

ABSTRACT

Within the unique Triplo-lethal region (Tpl) of the Drosophila melanogaster genome we have found a cluster of 20 genes encoding a novel family of proteins. This family is also present in the Anopheles gambiae genome and displays remarkable synteny and sequence conservation with the Drosophila cluster. The family is also present in the sequenced genome of D. pseudoobscura, and homologs have been found in Aedes aegypti mosquitoes and in four other insect orders, but it is not present in the sequenced genome of any noninsect species. Phylogenetic analysis suggests that the cluster evolved prior to the divergence of Drosophila and Anopheles (250 MYA) and has been highly conserved since. The ratio of synonymous to nonsynonymous substitutions and the high codon bias suggest that there has been selection on this family both for expression level and function. We hypothesize that this gene family is Tpl, name it the Osiris family, and consider possible functions. We also predict that this family of proteins, due to the unique dosage sensitivity and the lack of homologs in noninsect species, would be a good target for genetic engineering or novel insecticides.


Subject(s)
Anopheles/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Multigene Family , Synteny , Amino Acid Sequence , Animals , Bees/genetics , Chromosome Mapping , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...