Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 18(4): 622-641, 2019 04.
Article in English | MEDLINE | ID: mdl-30617155

ABSTRACT

Lung cancer is the leading cause of cancer death in both men and women. Tumor heterogeneity is an impediment to targeted treatment of all cancers, including lung cancer. Here, we sought to characterize tumor proteome and phosphoproteome changes by longitudinal, prospective collection of tumor tissue from an exceptional responder lung adenocarcinoma patient who survived with metastatic lung adenocarcinoma for over seven years while undergoing HER2-directed therapy in combination with chemotherapy. We employed "Super-SILAC" and TMT labeling strategies to quantify the proteome and phosphoproteome of a lung metastatic site and eight distinct metastatic progressive lymph nodes collected during these seven years, including five lymph nodes procured at autopsy. We identified specific signaling networks enriched in lung compared with the lymph node metastatic sites. We correlated the changes in protein abundance with changes in copy number alteration (CNA) and transcript expression. ERBB2/HER2 protein expression was higher in lung, consistent with a higher degree of ERBB2 amplification in lung compared with the lymph node metastatic sites. To further interrogate the mass spectrometry data, a patient-specific database was built by incorporating all the somatic and germline variants identified by whole genome sequencing (WGS) of genomic DNA from the lung, one lymph node metastatic site and blood. An extensive validation pipeline was built to confirm variant peptides. We validated 360 spectra corresponding to 55 germline and 6 somatic variant peptides. Targeted MRM assays revealed two novel variant somatic peptides, CDK12-G879V and FASN-R1439Q, expressed in lung and lymph node metastatic sites, respectively. The CDK12-G879V mutation likely results in a nonfunctional CDK12 kinase and chemotherapy susceptibility in lung metastatic sites. Knockdown of CDK12 in lung adenocarcinoma cells increased chemotherapy sensitivity which was rescued by wild type, but not CDK12-G879V expression, consistent with the complete resolution of the lung metastatic sites in this patient.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cyclin-Dependent Kinases/genetics , Mass Spectrometry/methods , Mutation/genetics , Proteomics , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Middle Aged , Mutant Proteins/metabolism , Neoplasm Metastasis , Neoplasm Proteins/metabolism , Peptides/metabolism , Phosphoproteins/metabolism , Phosphorylation , Reproducibility of Results
2.
J Proteome Res ; 15(3): 1023-32, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26860878

ABSTRACT

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics data sets from the mass spectrometric interrogation of tumor samples previously analyzed by The Cancer Genome Atlas (TCGA) program. The availability of the genomic and proteomic data is enabling proteogenomic study for both reference (i.e., contained in major sequence databases) and nonreference markers of cancer. The CPTAC laboratories have focused on colon, breast, and ovarian tissues in the first round of analyses; spectra from these data sets were produced from 2D liquid chromatography-tandem mass spectrometry analyses and represent deep coverage. To reduce the variability introduced by disparate data analysis platforms (e.g., software packages, versions, parameters, sequence databases, etc.), the CPTAC Common Data Analysis Platform (CDAP) was created. The CDAP produces both peptide-spectrum-match (PSM) reports and gene-level reports. The pipeline processes raw mass spectrometry data according to the following: (1) peak-picking and quantitative data extraction, (2) database searching, (3) gene-based protein parsimony, and (4) false-discovery rate-based filtering. The pipeline also produces localization scores for the phosphopeptide enrichment studies using the PhosphoRS program. Quantitative information for each of the data sets is specific to the sample processing, with PSM and protein reports containing the spectrum-level or gene-level ("rolled-up") precursor peak areas and spectral counts for label-free or reporter ion log-ratios for 4plex iTRAQ. The reports are available in simple tab-delimited formats and, for the PSM-reports, in mzIdentML. The goal of the CDAP is to provide standard, uniform reports for all of the CPTAC data to enable comparisons between different samples and cancer types as well as across the major omics fields.


Subject(s)
Neoplasms/diagnosis , Neoplasms/metabolism , Proteomics , Biomarkers, Tumor/metabolism , Humans , Proteome/metabolism
3.
Proteomics ; 15(7): 1194-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25762020

ABSTRACT

Multiple-reaction monitoring (MRM) of peptides has been recognized as a promising technology because it is sensitive and robust. Borrowed from stable-isotope dilution (SID) methodologies in the field of small molecules, MRM is now routinely used in proteomics laboratories. While its usefulness validating candidate targets is widely accepted, it has not been established as a discovery tool. Traditional thinking has been that MRM workflows cannot be multiplexed high enough to efficiently profile. This is due to slower instrument scan rates and the complexities of developing increasingly large scheduling methods. In this issue, Colangelo et al. (Proteomics 2015, 15, 1202-1214) describe a pipeline (xMRM) for discovery-style MRM using label-free methods (i.e. relative quantitation). Label-free comes with cost benefits as does MRM, where data are easier to analyze than full-scan. Their paper offers numerous improvements in method design and data analysis. The robustness of their pipeline was tested on rodent postsynaptic density fractions. There, they were able to accurately quantify 112 proteins at a CV% of 11.4, with only 2.5% of the 1697 transitions requiring user intervention. Colangelo et al. aim to extend the reach of MRM deeper into the realm of discovery proteomics, an area that is currently dominated by data-dependent and data-independent workflows.


Subject(s)
Nerve Tissue Proteins/chemistry , Proteome/chemistry , Synapses/chemistry , Animals
4.
Mol Cell Proteomics ; 13(9): 2435-49, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24889059

ABSTRACT

This work presents a method for creating a mass spectral library containing tandem spectra of identifiable peptide ions in the tryptic digestion of a single protein. Human serum albumin (HSA(1)) was selected for this purpose owing to its ubiquity, high level of characterization and availability of digest data. The underlying experimental data consisted of ∼3000 one-dimensional LC-ESI-MS/MS runs with ion-trap fragmentation. In order to generate a wide range of peptides, studies covered a broad set of instrument and digestion conditions using multiple sources of HSA and trypsin. Computer methods were developed to enable the reliable identification and reference spectrum extraction of all peptide ions identifiable by current sequence search methods. This process made use of both MS2 (tandem) spectra and MS1 (electrospray) data. Identified spectra were generated for 2918 different peptide ions, using a variety of manually-validated filters to ensure spectrum quality and identification reliability. The resulting library was composed of 10% conventional tryptic and 29% semitryptic peptide ions, along with 42% tryptic peptide ions with known or unknown modifications, which included both analytical artifacts and post-translational modifications (PTMs) present in the original HSA. The remaining 19% contained unexpected missed-cleavages or were under/over alkylated. The methods described can be extended to create equivalent spectral libraries for any target protein. Such libraries have a number of applications in addition to their known advantages of speed and sensitivity, including the ready re-identification of known PTMs, rejection of artifact spectra and a means of assessing sample and digestion quality.


Subject(s)
Peptide Library , Serum Albumin/chemistry , Chromatography, Liquid , Humans , Proteolysis , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Trypsin/chemistry
5.
Mol Cell Proteomics ; 13(5): 1341-51, 2014 May.
Article in English | MEDLINE | ID: mdl-24563535

ABSTRACT

Normalization is an important step in the analysis of quantitative proteomics data. If this step is ignored, systematic biases can lead to incorrect assumptions about regulation. Most statistical procedures for normalizing proteomics data have been borrowed from genomics where their development has focused on the removal of so-called 'batch effects.' In general, a typical normalization step in proteomics works under the assumption that most peptides/proteins do not change; scaling is then used to give a median log-ratio of 0. The focus of this work was to identify other factors, derived from knowledge of the variables in proteomics, which might be used to improve normalization. Here we have examined the multi-laboratory data sets from Phase I of the NCI's CPTAC program. Surprisingly, the most important bias variables affecting peptide intensities within labs were retention time and charge state. The magnitude of these observations was exaggerated in samples of unequal concentrations or "spike-in" levels, presumably because the average precursor charge for peptides with higher charge state potentials is lower at higher relative sample concentrations. These effects are consistent with reduced protonation during electrospray and demonstrate that the physical properties of the peptides themselves can serve as good reporters of systematic biases. Between labs, retention time, precursor m/z, and peptide length were most commonly the top-ranked bias variables, over the standardly used average intensity (A). A larger set of variables was then used to develop a stepwise normalization procedure. This statistical model was found to perform as well or better on the CPTAC mock biomarker data than other commonly used methods. Furthermore, the method described here does not require a priori knowledge of the systematic biases in a given data set. These improvements can be attributed to the inclusion of variables other than average intensity during normalization.


Subject(s)
Biometry/methods , Peptides/analysis , Proteins/analysis , Proteomics/methods , Chromatography, Liquid , Data Interpretation, Statistical , Mass Spectrometry , Models, Statistical , Proteins/chemistry
6.
Anal Chem ; 85(24): 11725-31, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24147600

ABSTRACT

Recent progress in metabolomics and the development of increasingly sensitive analytical techniques have renewed interest in global profiling, i.e., semiquantitative monitoring of all chemical constituents of biological fluids. In this work, we have performed global profiling of NIST SRM 1950, "Metabolites in Human Plasma", using GC-MS, LC-MS, and NMR. Metabolome coverage, difficulties, and reproducibility of the experiments on each platform are discussed. A total of 353 metabolites have been identified in this material. GC-MS provides 65 unique identifications, and most of the identifications from NMR overlap with the LC-MS identifications, except for some small sugars that are not directly found by LC-MS. Also, repeatability and intermediate precision analyses show that the SRM 1950 profiling is reproducible enough to consider this material as a good choice to distinguish between analytical and biological variability. Clinical laboratory data shows that most results are within the reference ranges for each assay. In-house computational tools have been developed or modified for MS data processing and interactive web display. All data and programs are freely available online at http://peptide.nist.gov/ and http://srmd.nist.gov/ .


Subject(s)
Blood Chemical Analysis/standards , Chromatography, Liquid/standards , Gas Chromatography-Mass Spectrometry/standards , Internet , Magnetic Resonance Spectroscopy/standards , Metabolomics/standards , United States Government Agencies , Analytic Sample Preparation Methods , Humans , Reference Standards , Software , United States
7.
J Proteome Res ; 12(12): 5666-80, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24116745

ABSTRACT

Trypsin is an endoprotease commonly used for sample preparation in proteomics experiments. Importantly, protein digestion is dependent on multiple factors, including the trypsin origin and digestion conditions. In-depth characterization of trypsin activity could lead to improved reliability of peptide detection and quantitation in both targeted and discovery proteomics studies. To this end, we assembled a data analysis pipeline and suite of visualization tools for quality control and comprehensive characterization of preanalytical variability in proteomics experiments. Using these tools, we evaluated six available proteomics-grade trypsins and their digestion of a single purified protein, human serum albumin (HSA). HSA was aliquoted and then digested for 2 or 18 h for each trypsin, and the resulting digests were desalted and analyzed in triplicate by reversed-phase liquid chromatography-tandem mass spectrometry. Peptides were identified and quantified using the NIST MSQC pipeline and a comprehensive HSA mass spectral library. We performed a statistical analysis of peptide abundances from different digests and further visualized the data using the principal component analysis and quantitative protein "sequence maps". While the performance of individual trypsins across repeat digests was reproducible, significant differences were observed depending on the origin of the trypsin (i.e., bovine vs porcine). Bovine trypsins produced a higher number of peptides containing missed cleavages, whereas porcine trypsins produced more semitryptic peptides. In addition, many cleavage sites showed variable digestion kinetics patterns, evident from the comparison of peptide abundances in 2 h vs 18 h digests. Overall, this work illustrates effects of an often neglected source of variability in proteomics experiments: the origin of the trypsin.


Subject(s)
Peptide Fragments/isolation & purification , Proteomics/standards , Serum Albumin/chemistry , Trypsin/chemistry , Amino Acid Sequence , Animals , Cattle , Chromatography, Reverse-Phase , Humans , Molecular Sequence Data , Peptide Fragments/chemistry , Principal Component Analysis , Proteolysis , Quality Control , Reproducibility of Results , Species Specificity , Swine , Tandem Mass Spectrometry
8.
Proteomics ; 13(22): 3247-50, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24123856

ABSTRACT

Spectral library searching has many advantages over sequence database searching, yet it has not been widely adopted. One possible reason for this is that users are unsure exactly how to interpret the similarity scores (e.g., "dot products" are not probability-based scores). Methods to create decoys have been proposed, but, as developers caution, may produce proxies that are not equivalent to reversed sequences. In this issue, Shao et al. (Proteomics 2013, 13, 3273-3283) report advances in spectral library searching where the focus is not on improving the performance of their search engine, SpectraST, but is instead on improving the statistical meaningfulness of its discriminant score and removing the need for decoys. The results in their paper indicate that by "standardizing" the input and library spectra, sensitivity is not lost but is, surprisingly, gained. Their tests also show that false discovery rate (FDR) estimates, derived from their new score, track better with "ground truth" than decoy searching. It is possible that their work strikes a good balance between the theory of library searching and its application. And as such, they hope to have removed a major entrance barrier for some researchers previously unwilling to try library searching.


Subject(s)
Computational Biology/methods , Databases, Protein , Models, Statistical , Peptides , Tandem Mass Spectrometry/methods , Humans
9.
Proteomics ; 13(6): 904-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23319436

ABSTRACT

Proteomics is a rapidly transforming interdisciplinary field of research that embraces a diverse set of analytical approaches to tackle problems in fundamental and applied biology. This viewpoint article highlights the benefits of interlaboratory studies and standardization initiatives to enable investigators to address many of the challenges found in proteomics research. Among these initiatives, we discuss our efforts on a comprehensive performance standard for characterizing PTMs by MS that was recently developed by the Association of Biomolecular Resource Facilities (ABRF) Proteomics Standards Research Group (sPRG).


Subject(s)
Laboratories/standards , Mass Spectrometry/standards , Protein Processing, Post-Translational , Proteomics , Cooperative Behavior , Guidelines as Topic , Humans , Proteome/metabolism , Reference Standards
10.
Anal Bioanal Chem ; 405(13): 4451-65, 2013 May.
Article in English | MEDLINE | ID: mdl-22941178

ABSTRACT

Standard Reference Materials (SRMs) offer the scientific community a stable and homogenous source of material that holds countless application possibilities. Traditionally, the National Institute of Standards and Technology (NIST) has provided SRMs with associated quantitative information (certified values) for a select group of targeted analytes as measured in a solution or complex matrix. While the current needs of the SRM community are expanding to include non-quantitative data, NIST is attempting to broaden the scope of how and what information is offered to the SRM community by providing qualitative information about biomaterials, such as chromatographic fingerprints and profiles of untargeted identifications. In this work, metabolomic and proteomic profiling efforts were employed to characterize a suite of six Vaccinium berry SRMs. In the discovery phase, liquid chromatography-tandem mass spectrometry (LC-MS/MS) data was matched to mass spectral libraries; a subsequent validation phase based on multiple-reaction monitoring LC-MS/MS relied on both retention time matching of authentic standards along with fragmentation data for a qualitative overview of the most prominent organic compounds present. Definitive and putative identifications were determined for over 70 metabolites based on reporting guidelines set forth by the Metabolomics Standards Initiative (Metabolomics 3(3):211-221, 2007), and the capability of electrospray ionization mass spectrometry (ESI-MS) to profile untargeted metabolites within a complex matrix using mass spectral matching is demonstrated. Bottom-up proteomic analyses were possible using peptide databases translated from expressed sequence tags (ESTs). Homology searches provided identification of novel Vaccinium proteins based on homology to related genera. Chromatographic fingerprints of these berry materials were acquired for supplemental qualitative information to be provided to users of these SRMs. An unbounded set of qualitative data about a biomaterial is a valuable complement to quantitative information traditionally provided in NIST Certificates of Analysis.


Subject(s)
Chromatography, Liquid/standards , Fruit/chemistry , Mass Spectrometry/standards , Metabolome , Vaccinium/chemistry , Chromatography, Liquid/methods , Databases, Protein , Expressed Sequence Tags , Fruit/classification , Fruit/genetics , Mass Spectrometry/methods , Proteomics , Reference Standards , Reference Values , Vaccinium/classification , Vaccinium/genetics
11.
J Proteome Res ; 9(10): 4982-91, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20677825

ABSTRACT

Immunoaffinity depletion with antibodies to the top 7 or top 14 high-abundance plasma proteins is used to enhance detection of lower abundance proteins in both shotgun and targeted proteomic analyses. We evaluated the effects of top 7/top 14 immunodepletion on the shotgun proteomic analysis of human plasma. Our goal was to evaluate the impact of immunodepletion on detection of proteins across detectable ranges of abundance. The depletion columns afforded highly repeatable and efficient plasma protein fractionation. Relatively few nontargeted proteins were captured by the depletion columns. Analyses of unfractionated and immunodepleted plasma by peptide isoelectric focusing (IEF), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), demonstrated enrichment of nontargeted plasma proteins by an average of 4-fold, as assessed by MS/MS spectral counting. Either top 7 or top 14 immunodepletion resulted in a 25% increase in identified proteins compared to unfractionated plasma. Although 23 low-abundance (<10 ng mL(-1)) plasma proteins were detected, they accounted for only 5-6% of total protein identifications in immunodepleted plasma. In both unfractionated and immunodepleted plasma, the 50 most abundant plasma proteins accounted for 90% of cumulative spectral counts and precursor ion intensities, leaving little capacity to sample lower abundance proteins. Untargeted proteomic analyses using current LC-MS/MS platforms-even with immunodepletion-cannot be expected to efficiently discover low-abundance, disease-specific biomarkers in plasma.


Subject(s)
Biomarkers/analysis , Blood Proteins/analysis , Proteome/analysis , Proteomics/methods , Antibodies/immunology , Biomarkers/blood , Blood Proteins/immunology , Chromatography, Liquid , Humans , Isoelectric Focusing , Proteome/immunology , Reproducibility of Results , Tandem Mass Spectrometry
12.
Anal Chem ; 82(5): 1584-8, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20121140

ABSTRACT

A method that relies on subtractive tissue-directed shot-gun proteomics to identify tumor proteins in the blood of a patient newly diagnosed with cancer is described. To avoid analytical and statistical biases caused by physiologic variability of protein expression in the human population, this method was applied on clinical specimens obtained from a single patient diagnosed with nonmetastatic renal cell carcinoma (RCC). The proteomes extracted from tumor, normal adjacent tissue and preoperative plasma were analyzed using 2D-liquid chromatography-mass spectrometry (LC-MS). The lists of identified proteins were filtered to discover proteins that (i) were found in the tumor but not normal tissue, (ii) were identified in matching plasma, and (iii) whose spectral count was higher in tumor tissue than plasma. These filtering criteria resulted in identification of eight tumor proteins in the blood. Subsequent Western-blot analysis confirmed the presence of cadherin-5, cadherin-11, DEAD-box protein-23, and pyruvate kinase in the blood of the patient in the study as well as in the blood of four other patients diagnosed with RCC. These results demonstrate the utility of a combined blood/tissue analysis strategy that permits the detection of tumor proteins in the blood of a patient diagnosed with RCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/blood , Kidney Neoplasms/blood , Biomarkers, Tumor/analysis , Carcinoma, Renal Cell/diagnosis , Chromatography, Liquid , Humans , Kidney Neoplasms/diagnosis , Mass Spectrometry
13.
Mol Cell Proteomics ; 9(2): 225-41, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19837981

ABSTRACT

A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications.


Subject(s)
Chromatography, Liquid/methods , Chromatography, Liquid/standards , Proteomics/methods , Proteomics/standards , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards , Animals , Chickens , Egg Proteins/analysis , Laboratories , Proteome/analysis , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/analysis , Software
14.
Mol Cell Proteomics ; 9(2): 242-54, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19858499

ABSTRACT

Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize pre-analytical and analytical variation in comparative proteomics experiments.


Subject(s)
Chromatography, Liquid/methods , Chromatography, Liquid/standards , Clinical Laboratory Techniques/standards , Mass Spectrometry/methods , Mass Spectrometry/standards , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae/metabolism , Biomarkers/metabolism , Humans , Proteomics/standards
15.
J Proteome Res ; 9(2): 761-76, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19921851

ABSTRACT

The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35-60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies.


Subject(s)
Chromatography, Liquid/methods , Proteome , Tandem Mass Spectrometry/methods , Reproducibility of Results
16.
Nat Biotechnol ; 27(7): 633-41, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19561596

ABSTRACT

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low mug/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Subject(s)
Blood Proteins/analysis , Mass Spectrometry/methods , Biomarkers/blood , Blood Chemical Analysis/methods , Humans , Linear Models , Mass Spectrometry/standards , Proteome/analysis , Reproducibility of Results , Sensitivity and Specificity , Technology Assessment, Biomedical
17.
J Histochem Cytochem ; 55(7): 763-72, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17409379

ABSTRACT

Targeted proteomics research, based on the enrichment of disease-relevant proteins from isolated cell populations selected from high-quality tissue specimens, offers great potential for the identification of diagnostic, prognostic, and predictive biological markers for use in the clinical setting and during preclinical testing and clinical trials, as well as for the discovery and validation of new protein drug targets. Formalin-fixed and paraffin-embedded (FFPE) tissue collections, with attached clinical and outcome information, are invaluable resources for conducting retrospective protein biomarker investigations and performing translational studies of cancer and other diseases. Combined capillary isoelectric focusing/nano-reversed-phase liquid chromatography separations equipped with nano-electrospray ionization-tandem mass spectrometry are employed for the studies of proteins extracted from microdissected FFPE glioblastoma tissues using a heat-induced antigen retrieval (AR) technique. A total of 14,478 distinct peptides are identified, leading to the identification of 2733 non-redundant SwissProt protein entries. Eighty-three percent of identified FFPE tissue proteins overlap with those obtained from the pellet fraction of fresh-frozen tissue of the same patient. This large degree of protein overlapping is attributed to the application of detergent-based protein extraction in both the cell pellet preparation protocol and the AR technique.


Subject(s)
Proteome/analysis , Amino Acid Sequence , Brain Neoplasms/metabolism , Chromatography, Liquid , False Positive Reactions , Fixatives , Formaldehyde , Glioblastoma/metabolism , Humans , Isoelectric Focusing , Microdissection , Molecular Sequence Data , Paraffin Embedding , Peptides/analysis , Spectrometry, Mass, Electrospray Ionization
18.
Anal Chem ; 79(3): 1002-9, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17263328

ABSTRACT

This work expands our tissue proteome capabilities from the analysis of soluble proteins in previous studies to the examination of membrane proteins within the pellets of enriched and selectively isolated tumor cells procured from microdissected tissue specimens. The pellets of targeted ovarian tumor cells are treated by two different membrane protein extraction methods, including the use of detergent and organic solvent. The detergent-based membrane protein preparation protocol not only extracts proteins effectively from cell pellets but also is compatible with subsequent proteome analysis using combined capillary isoelctric focusing/nano reversed-phase liquid chromatography separations coupled with nano electrospray ionization mass spectrometry. Among proteins identified from an amount of pellet equivalent to 20 000 cells, 773 proteins are predicted to contain one or more transmembrane domains, corresponding to 22% membrane proteome coverage within the SwissProt Human protein sequence entries.


Subject(s)
Membrane Proteins/analysis , Neoplasm Proteins/analysis , Ovarian Neoplasms/chemistry , Proteomics/methods , Chromatography, Liquid , Electrophoresis, Capillary , Female , Humans , Isoelectric Focusing , Mass Spectrometry , Ovarian Neoplasms/pathology , Proteomics/instrumentation
19.
J Proteome Res ; 5(6): 1469-78, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16739998

ABSTRACT

Saliva is a readily available body fluid with great diagnostic potential. The foundation for saliva-based diagnostics, however, is the development of a complete catalog of secreted and "leaked" proteins detectable in saliva. By employing a capillary isoelectric focusing-based multidimensional separation platform coupled with electrospray ionization tandem mass spectrometry (MS), a total of 5338 distinct peptides were sequenced, leading to the identification of 1381 distinct proteins. A search of bacterial protein sequences also identified many peptides unique to several organisms and unique to the NCBI nonredundant database. To the best of our knowledge, this proteome study represents the largest catalog of proteins measured from a single saliva sample to date. Data analysis was performed on individual MS/MS spectra using the highly specific peptide identification algorithm, OMSSA. Searches were conducted against a decoyed SwissProt human database to control the false-positive rate at 1%. Furthermore, the well-curated SwissProt sequences represent perhaps the least redundant human protein sequence database (12,484 records versus the 50,009 records found in the International Protein Index human database), therefore minimizing multiple protein inferences from single peptides. This combined bioanalytical and bioinformatic approach has established a solid foundation for building up the human salivary proteome for the realization of the diagnostic potential of saliva.


Subject(s)
Proteome/analysis , Saliva/chemistry , Chromatography, Liquid , Electrophoresis, Capillary , Humans , Isoelectric Focusing , Male , Proteome/genetics , Spectrometry, Mass, Electrospray Ionization
20.
Anal Chem ; 77(20): 6549-56, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16223239

ABSTRACT

This study demonstrates the ability to perform sensitive proteome analysis on the limited protein quantities available through tissue microdissection. Capillary isoelectric focusing combined with nano-reversed-phase liquid chromatography in an automated and integrated platform not only provides systematic resolution of complex peptide mixtures based on their differences in isoelectric point and hydrophobicity but also eliminates peptide loss and analyte dilution. In comparison with strong cation exchange chromatography, the significant advantages of electrokinetic focusing-based separations include high resolving power, high concentration and narrow analyte bands, and effective usage of electrospray ionization-tandem MS toward peptide identifications. Through the use of capillary isoelectric focusing-based multidimensional peptide separations, a total of 6866 fully tryptic peptides were detected, leading to the identification of 1820 distinct proteins. Each distinct protein was identified by at least one distinct peptide sequence. These high mass accuracy and high-confidence identifications were generated from three proteome runs of a single glioblastoma multiforme tissue sample, each run consuming only 10 microg of total protein, an amount corresponding to 20,000 selectively isolated cells. Instead of performing multiple runs of multidimensional separations, the overall peak capacity can be greatly enhanced for mining deeper into tissue proteomics by increasing the number of CIEF fractions without an accompanying increase in sample consumption.


Subject(s)
Brain Neoplasms/chemistry , Glioblastoma/chemistry , Isoelectric Focusing/methods , Proteome/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Chromatography, Liquid/methods , Dissection , Electrophoresis, Capillary/methods , Optics and Photonics , Peptide Fragments/chemistry , Proteins/chemistry , Reproducibility of Results , Sensitivity and Specificity , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...