Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14916, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942912

ABSTRACT

The Ediacaran-Cambrian transition documents a critical stage in the diversification of animals. The global fossil record documents the appearance of cloudinomorphs and other shelled tubular organisms followed by non-biomineralized small carbonaceous fossils and by the highly diversified small shelly fossils between ~ 550 and 530 Ma. Here, we report diverse microfossils in thin sections and hand samples from the Ediacaran Bocaina Formation, Brazil, separated into five descriptive categories: elongate solid structures (ES); elongate filled structures (EF); two types of equidimensional structures (EQ 1 and 2) and elongate hollow structures with coiled ends (CE). These specimens, interpreted as diversified candidate metazoans, predate the latest Ediacaran biomineralized index macrofossils of the Cloudina-Corumbella-Namacalathus biozone in the overlying Tamengo Formation. Our new carbonate U-Pb ages for the Bocaina Formation, position this novel fossil record at 571 ± 9 Ma (weighted mean age). Thus, our data point to diversification of metazoans, including biomineralized specimens reminiscent of sections of cloudinids, protoconodonts, anabaritids, and hyolithids, in addition to organo-phosphatic surficial coverings of animals, demonstrably earlier than the record of the earliest known skeletonized metazoan fossils.


Subject(s)
Fossils , Animals , Brazil , Animal Shells/anatomy & histology , Animal Shells/chemistry , Biological Evolution , Paleontology/methods
2.
Sci Rep ; 7(1): 1468, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28469235

ABSTRACT

Soft-tissue preservation provides palaeobiological information that is otherwise lost during fossilization. In Brazil, the Early Cretaceous Santana Formation contains fish with integument, muscles, connective tissues, and eyes that are still preserved. Our study revealed that soft-tissues were pyritized or kerogenized in different microfacies, which yielded distinct preservation fidelities. Indeed, new data provided the first record of pyritized vertebrate muscles and eyes. We propose that the different taphonomic pathways were controlled by distinct sedimentation rates in two different microfacies. Through this process, carcasses deposited in each of these microfacies underwent different residence times in sulphate-reduction and methanogenesis zones, thus yielding pyritized or kerogenized soft-tissues, and a similar process has previously been suggested in studies of a late Ediacaran lagerstätte.


Subject(s)
Ferric Compounds/chemistry , Fishes/anatomy & histology , Fossils/anatomy & histology , Geologic Sediments/chemistry , Iron/chemistry , Sulfides/chemistry , Animals , Biological Evolution , Brazil , Fishes/classification , Fossils/history , History, Ancient , Oxidation-Reduction , Preservation, Biological
3.
PLoS One ; 10(3): e0114219, 2015.
Article in English | MEDLINE | ID: mdl-25822998

ABSTRACT

The Ediacaran fossil Corumbella is important because it is hypothesized to be a scyphozoan cnidarian, and thus might be one of the rare examples of bona fide Neoproterozoic animals. Unfortunately, its mode of life, style of skeletonization, and taxonomic affinity have been very controversial. Here, we use X-ray micro-CT, SEM, and taphonomic analysis to compare preservational modes of Corumbella, in order to better understand the symmetry, mode of construction, preservational style, and taxonomy of this group. Results suggest that articulated and disarticulated specimens of Corumbella from the Ediacaran of Brazil, Paraguay, and the United States, although sometimes preserved very differently, represent the same taxon--Corumbella werneri. Corumbellids had a thick but flexible theca and probably lived with their basalmost part anchored in the sediment, much like Conotubus. When considered together, these results suggest that Corumbella was one of the first animals to build a skeleton, employing a lamellar microfabric similar to conulariids.


Subject(s)
Fossils , Gastropoda , Skeleton , Animals , Brazil , Gastropoda/anatomy & histology , Gastropoda/classification , Geography , Paleontology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...